电流互感器研究动态汇编_第1页
电流互感器研究动态汇编_第2页
电流互感器研究动态汇编_第3页
电流互感器研究动态汇编_第4页
电流互感器研究动态汇编_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子式电流互感器

研究动态共88页2电子式电流互感器研制ECT-Electroniccurrenttransformers共88页3电流互感器简介互感器是电力系统的眼睛。传统的电流互感器是电磁感应式,结构类似变压器(区别:CT磁密甚小)。按用途分:1、测量用将任一数值的交流电流转换为用标准仪器可以直接测量的交流电流值;使高压回路与维护人员可以接近的测量仪表绝缘。

2、保护用将任一数值的交流电流转换成可以供给继电保护装置的交流电流值;使高压回路与维护人员可以接近的继电器绝缘。

共88页4电磁感应式电流互感器主要优点电磁感应式电流互感器是一种传统的电流测量和保护设备性能比较稳定适合长期运行有长期的运行经验共88页5电磁感应式电流互感器的缺点绝缘复杂不能用于测量直流输电系统磁饱和(将产生大的测量误差)铁磁谐振有油易燃易爆体积大,重量重共88页6电子式电流互感器的优点绝缘简单没有磁饱和、铁磁谐振等问题无二次开路高压测量频带宽,动态范围大结构紧凑,体积小,重量轻适应电力系统自动化数字化要求无易燃、易爆炸危险共88页7电子式电流互感器发展现状电子式电流互感器是当前国内外研究的热点ABB公司研制的监测、保护超高压串联电容器组电流的ECT于1987~1990年全面投运法国ALSTOM、日本东京电力公司、东芝公司也有研究美国的PhotonicPowerSystem公司已经初步将A/D采集式电流互感器产品化,激光供能方式,在美国、芬兰等国变电站中得到较广泛的应用国内清华大学、燕山大学、大连理工大学研究有源式ECT华中科技大学、哈尔滨科技大学、上海科技大学、重庆大学进行磁光式ECT的研究共88页8有关研制及生产电子式电流互感器的单位

目前所达到的水平

研制及生产单位光电互感器种类准确度瑞士ABB公司磁光式0.2级华中科技大学磁光式0.5级加拿大NxtPhase公司全光纤式0.2级瑞士ABB公司有源式0.2级美国PhotonicPowerSystem公司有源式0.2级清华大学有源式0.3级大连理工大学有源式0.5级共88页9国内外研究现状广州换流站激光供能的500kVECT(测直流)西门子公司制造

运用了一些美国PhotonicPowerSystem公司技术广州换流站激光供能的35kVECT(测直流)共88页10(加拿大)NxtPhase公司的磁光式500kV组合式光电电流电压互感器共88页11(加拿大)NxtPhase公司的磁光式组合式光电电流电压互感器二次输出指标共88页12国内外研究现状ABB公司的磁光式ECT共88页13电子式互感器标准IEC60044-7互感器(1999)

第7部分:电子式电压互感器

IEC60044-8互感器(2002)

第8部分:电子式电流互感器我国也正在制定电子式电压互感器和电流互感器的国家标准

GB/TXXXX.7-200XGB/TXXXX.8-200X共88页14电子式电流互感器分类电子式电流互感器主要分两类:1、无源式-传感头采用磁光晶体或光纤2、有源式-传感头采用电子器件,需提供电源共88页15无源式ECT的几种实现方法(一)基于Faraday磁光效应的

全光纤型电流互感器原理示意图共88页16无源式ECT的几种实现方法(二)基于Faraday磁光效应的

磁光玻璃型电流互感器原理示意图共88页17MOCT的几种实现方法(三)基于Kerr效应测量电流原理示意图(原理见下页)

磁介质共88页18Kerr磁光效应是指线偏振光在磁化了的磁介质表面发生反射时,反射光的偏振面相对于入射光的偏振面会发生偏转。通过测量偏转角度的大小,就可以间接测得磁介质外加磁场大小,如果这个磁场是由高压电流产生,则也可以通过相应的换算得到电流的大小共88页19有源式ECT的实现方法在高压侧的传感头采用的是电子器件,而不是磁光晶体或光纤。因此高压侧要有供电电源。A/D转换式(即ADC式),实际研制时采用的方式。共88页20图ADC式电子式电流互感器的整体结构图ADC式电子式电流互感器整体结构图共88页21A/D转换式ECT特点AD变换器的转换精度高,采样频率高系统的功耗小,可以实现低功耗接收端的电路比较简单,可以直接和计算机进行通信传送的是数字信号,传送过程中抗干扰能力强共88页22电子式电流互感器方案的选定无源式电流互感器的原理与传统的电磁式互感器截然不同,优点在于其传感头在设计上没有电源的供应的问题,但是这种互感器对光学技术、光纤技术以及光学材料的发展有很大的依赖性,研制技术难度大,成本较高。而且,磁光材料在外界环境的温度压力等参数变换的情况下的稳定性也是一个技术上难以解决的问题。因此,要达到实用阶段还要走很长的路。共88页23有源式电流互感器采用的是传统的电阻、电容等器件,优点在于采样精确度比较高,同无源光电互感器相比,在结构上更加简单,也比较容易和计算机实现直接通信,但是它的缺点在于传感头的电源供应、大范围电流的准确测量问题和电磁兼容问题。共88页24最后方案的选定

考虑到电子器件的选择和电路的设计难度,采用ADC式电子电流互感器作为研究对象。这种电流互感器的传感头的总体功耗比较小,采样精确度比较高,接收端的电路工作比较可靠,容易实现多路信号同时采集,另外,ADC式光电电流互感器传输的是数字信号,易于和计算机实现数据通信共88页25ECT方案三相测量电流C相电流C相电流B相电流B相电流A相电流A相电流保护线圈测量线圈保护线圈测量线圈保护线圈测量线圈高压侧信号处理单元高压侧信号处理单元高压侧信号处理单元信号接收和分配单元低压侧信号处理单元低压侧信号处理单元低压侧信号处理单元三相保护电流至测量柜至保护柜光纤共88页2673654211—输电线2—传感头3—绝缘子串4—接线盒5—拉杆6—传输光纤7—电子元件电子式电流互感器现场安装示意图共88页27正在安装的ECT共88页28共88页29ECT的性能指标电压等级220kV母线电流600A输出精度测量级0.2级,4V,负荷2MΩ保护级为5P20,200mV供能方式为特制线圈供能安装方式为悬挂式达到水平:国际先进共88页30电流互感器的设计方案

传感头

Rogowski线圈(测量暂态信号-保护用)小信号铁芯CT(测量稳态信号-测量用)

A/D采样及温度补偿电能供应

光纤传输,光纤绝缘子信号接收单元电子式互感器校验仪共88页31传感头的结构示意图图3.1传感头结构示意图共88页32电流互感器样机(传感头)共88页33传感头内部结构图共88页34

传感头部分装配原理示意图1-导电杆、2-电源板、3-电源变压器、4-A/D采集板、5-罗果夫斯基线圈、6-铁芯线圈7-铁芯线圈外围电路板、8-金具、9-外壳共88页35Rogowski线圈介绍Rogowski线圈实际上就是一个缠绕在非磁性骨架上的空心螺线管是测量暂态电流的一种常用工具,现在也有用于测稳态电流的,供计量和保护用没有铁心,不会产生磁饱和不直接串联在被测回路中,不会消耗被测回路的能量线圈和被测回路没有直接的电的关系,对被测回路的影响较小共88页36图罗果夫斯基线圈原理图及等效原理图共88页37Rogowski线圈介绍

Rogowski线圈结构图首先设线圈每匝中心线与导线中心线间的距离为r,穿过线圈每匝的磁场均为Br,且线圈共有n匝,每匝的面积均为S,0为真空导磁率,则可得:导线电流I(t)与Br的关系为:

感应电压u2(t)与I(t)的关系为:

共88页38Rogowski线圈的几个问题(1)在测量小信号时,由于Rogowski线圈为空心线圈,要达到很高的准确度,就要求线圈具有较多的匝数。根据国家标准GB1208-1997对电流互感器的规定,对于测量通道,应保证在小于1.2倍额定电流的情况下能够实现正常测量,误差在规定的范围之内;同时对保护通道,能保证在20倍额定电流以内能够进行保护监测。假设额定电流为600A,则保护用暂态电流幅值可达600*20=12000A,实现如此大范围内信号的准确测量难度是很大的共88页39Rogowski线圈的几个问题(2)线圈骨架的选择水泥、大理石、花岗岩

要求:选择线性膨胀系数小的材料做线圈骨架,随温度变化,形变越小越好,使线圈所受影响最小Rogowski线圈的输出信号通常比较弱,易受外界电磁场的干扰,应对线圈进行屏蔽,输出信号用屏蔽双绞线引出共88页40小信号铁芯CT(测量稳态信号-测量用)根据国家标准GB1208-1997对电流互感器的规定,对于测量通道,应保证在小于1.2倍额定电流的情况下能够实现正常测量,误差在规定的范围之内;铁芯采用硅钢片或超微晶合金材料,环形穿心结构,没有气隙、漏磁少共88页41A/D转换电路A/D转换电路是整个传感头的核心部分要求:A/D转换器件功耗小、采样率足够高线圈输出的电流为正弦波,因此A/D转换器件要具有双极性输入,串行输出采用时分复用方式传送下行信号共88页42共88页43高电位侧的电源供应问题特制CT线圈从母线采电的供能方式

激光供能方式

蓄电池或太阳能电池供能方式超声电源供能方式共88页44特制CT线圈供能方式采用接在母线上的参数变压器获得电压信号,对其进行整流、滤波、稳压后供给后级的电子线路问题是母线中电流变化范围很大,从空载电流到额定电流,以及发生故障时的短路电流和雷电冲击电流,都要求保证直流电源的可靠输出在母线电流为零的情况下,这种方法不能提供足够的电压输出来维持传感头的工作共88页45共88页46激光供能方式采用激光器从地面低电位侧通过光纤将光能传送到高电位侧,再经光电池将光能转换成电能,再经过DC-DC变换后,提供稳定的电压输出优点:纹波小、不易受外界干扰,摆脱了高压母线电流大小和电压高低的影响,这种供能方式的互感器可以对母线进行故障检测缺点:价格比较昂贵、寿命短、光电池转换效率低,功率不足,要求电子线路选用低功耗元件共88页47激光器和光电池选用半导体激光器(LD),波长为808nm传感头电子线路的总功率一般在140mW或更高,电路板上DC-DC转换电路的转换效率在50%左右,光电池的转换效率在25~30%左右,激光器应工作在额定功率的70~80%左右,因此,要求激光器的输出功率在1.5~2.0W比较合适目前半导体激光器市场价格欧美1.8W

10000小时(1.14年)$2500国内2.0W

5000小时(0.57年)¥3000共88页48光纤传输与光纤绝缘子基本设计要求是:允许传光光纤通过绝缘结构;耐受相应电压等级的各种过电压;具有一定的抗振能力;为了体现光电式电流互感器的优点,绝缘结构的设计应尽可能做到体积小重量轻另一种思路:无线传输,如GPRS、GSM通讯,缺点:盲区、故障、不独立共88页49共88页50共88页51共88页5245678312图嵌入光纤的合成绝缘子结构1—备用光纤2—可拆卸连接头3—传输光纤4—绝缘子金具5—芯棒6—伞裙7—护套8—硅橡胶共88页53低压侧接线盒图接线盒结构示意图1-外壳、2-进线头、3-加紧式出线头、4-固定架、5、6-密封圈、7-固定螺栓、8、9-螺钉、10、11-螺母、12、13-密封圈、共88页54共88页55共88页56信号接收机的主要作用将传感头通过光纤传递下来的光脉冲信号转换成电脉冲信号,并进行放大处理。通过两路处理通道(一路是是采用D/A转换器的模拟通道,一路是采用计算机处理的数字通道),对传输下来的信号进行处理。输出IEC标准规定的模拟信号和数字信号共88页57共88页58共88页59信号接收机的组成O/E变换部分(光电转换)逻辑控制电路部分-提供控制信号信号接收机的模拟通道-数字还原成模拟信号信号接收机的数字通道-将数据采集进计算机分为以下四个部分:共88页601、O/E变换部分(光电转换)将传感头传下来的两组信号:一组是数据信号,另一组是时钟信号,转换成电脉冲信号。器件采用PIN光电二极管。放大整形电路将微弱的电信号还原成标准的TTL电平信号。器件采用高精度的比较器。共88页612、逻辑控制电路将系统的四路时钟信号和数据信号分离开来,并产生器件要求的时序;送入D/A转换器和PC机接口卡,分别进行处理。共88页623、模拟通道-D/A转换电路将传感头传输的串行信号转换为并行数字信号,送入到D/A转换器件中;通过D/A转换电路后,输出的模拟信号共分四路:

一路电流测量通道(来自CT线圈);二路继电保护通道(来自Rogowski线圈);三路电压监测输出(用于监测供能电压);四路温度测量输出(用于监测和误差校正)。共88页634、数字通道提供满足标准要求的数字信号,供二次仪表使用(测量、计量或保护)测量额定值:2D41H(十进制11585),保证测量2倍额定电流无任何溢出保护额定值:01CFH(十进制463),保证测量50倍额定电流无任何溢出共88页64

电子式互感器校验仪的研制共88页65电子式互感器校验仪的研制

传统互感器校验仪存在的问题

校验电磁式互感器的测差式互感器校验仪不能检定ECT样机。电磁式CT的二次输出为恒流输出,而电子式电流互感器的二次侧输出是电压(其中测量通道4V,保护通道200mV)传统校验仪不能校验数字信号。虚拟仪器技术

美国NI公司的LabVIEW软件及各种功能的采集卡共88页66电子式互感器校验仪的原理

信号调理箱将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论