下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市十六中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若数列的前4项分别是,则此数列的一个通项公式为()A. B. C. D.参考答案:C【考点】数列的概念及简单表示法.【分析】由数列的前4项分别是,可知:第n项的符号为(﹣1)n+1,其绝对值为.即可得出.【解答】解:由数列的前4项分别是,可知:第n项的符号为(﹣1)n+1,其绝对值为.因此此数列的一个通项公式为an=.故选:C.2.设命题甲;命题乙,那么甲是乙的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B3.二面角α-l-β为60°,A、B是棱l上的两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为()A.2a
B.a
C.a
D.a参考答案:A4.不等式的解集是A.
B.
C.
D.参考答案:B5.抛物线的焦点坐标是(
)。A.
B.
C.
D.参考答案:D略6.极坐标方程3ρsin2θ+cosθ=0表示的曲线是()A.抛物线 B.双曲线 C.椭圆 D.圆参考答案:A【考点】简单曲线的极坐标方程.【分析】3ρsin2θ+cosθ=0两边同乘以ρ,可得3ρ2sin2θ+ρcosθ=0,利用互化公式可得直角坐标方程,即可判断出曲线类型.【解答】解:3ρsin2θ+cosθ=0两边同乘以ρ,可得3ρ2sin2θ+ρcosθ=0,∵y=ρsinθ,x=ρcosθ,∴3y2+x=0,所以曲线为抛物线.故选:A.7.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰长为1的等腰直角三角形,则这个平面图形的面积是(
)A.
B.
C.
D.参考答案:A根据斜二测的画法,直观图等腰直角三角形,还原为一条直角边长为、另一条直角边为的直角三角形,由三角形面积公式可得这个平面图形的面积是,故选A.
8.函数为(
)A.偶函数,且在上是减函数
B.偶函数,且在上是增函数C.奇函数,且在上是减函数
D.奇函数,且在上是增函数参考答案:A略9.已知都是正实数,且满足,则的最小值为(
)A.12
B.10
C.8
D.6参考答案:C10.在等差数列中,若前5项和,则等于(
)A.4
B.-4 C.2 D.-2参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知空间两点、,则A、B两点间的距离为
.
参考答案:5∵空间两点、,∴由空间中两点间距离公式可得,故答案为5.
12.设为两个不重合的平面,是两条不重合的直线,给出下列四个命题:①若,,,,则;②若相交且不垂直,则不垂直;③若,则n⊥;
④若,则.其中所有真命题的序号是_______.参考答案:④13.已知α∈(0,),β∈(,π),cosα=,sin(α+β)=-,则cosβ=
▲
.参考答案:-【分析】利用的取值范围和,求得的值,然后结合两角和与差的余弦函数公式来求的值.【详解】,,,,解得,故答案为.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
14.已知实数,,随机输入,执行如右图所示的程序框图,则输出的不小于的概率为__________.参考答案:略15.计算:=.参考答案:11【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题.【分析】利用对数的运算法则、对数恒等式、指数幂的运算法则即可得出.【解答】解:原式=3++=3+4+22=11.故答案为:11.【点评】本题考查了对数的运算法则、对数恒等式、指数幂的运算法则,属于基础题.16.设(x2+1)(4x-3)8=a0+a1(2x-1)+a2(2x-1)2+…+a10(2x-1)10,则a1+a2+…+a10=_______________.参考答案:【分析】先令可求出的值,然后利用可得出,然后将两式相减可得出代数式的值。【详解】,令可得,令可得,因此,,故答案为:.【点睛】本题考查二项展开式项的系数和,一般利用赋值法来求解,赋值如下:设,则(1);(2);(3).17.已知函数f(x)=x2+bx+2,g(x)=f(f(x)),若f(x)与g(x)有相同的值域,则实数b的取值范围是.参考答案:b≥4或b≤﹣2【考点】二次函数的性质.【分析】首先这个函数f(x)的图象是一个开口向上的抛物线,也就是说它的值域就是大于等于它的最小值.F(x)=f(f(x))它的图象只能是函数f(x)上的一段,而要这两个函数的值域相同,则函数
F(x)必须要能够取到最小值,这样问题就简单了,就只需要f(x)的最小值小于﹣.【解答】解:由于f(x)=x2+bx+2,x∈R.则当x=﹣时,f(x)min=2﹣,又由函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,则函数F(x)必须要能够取到最小值,即2﹣≤﹣,得到b≥4或b≤﹣2所以b的取值范围为b≥4或b≤﹣2.故答案为:b≥4或b≤﹣2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(),其中.(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
参考答案:(Ⅰ)解:.当时,.令,解得,,.当变化时,,的变化情况如下表:02-0+0-0+↘极小值↗极大值↘极小值↗所以在,内是增函数,在,内是减函数.
(Ⅱ)解:,显然不是方程的根.为使仅在处有极值,必须成立,即有.解些不等式,得.这时,是唯一极值.因此满足条件的的取值范围是.
(Ⅲ)解:由条件,可知,从而恒成立.当时,;当时,.因此函数在上的最大值是与两者中的较大者.为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立.所以,因此满足条件的的取值范围是.19.如图,要测底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,求电视塔AB的高度.参考答案:【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】设AB=xm,利用解直角三角形算出BD=m且BC=xm,然后在△DBC中利用余弦定理,结合题中数据建立关于x的方程,解出x的值即可得到电视塔AB的高度.【解答】解:根据题意,设AB=xm,则Rt△ABD中,∠ADB=30°,可得BD==m,同理可得Rt△ABC中,BC=AB=xm,∵在△DBC中,∠BCD=120°,CD=40m,∴由余弦定理BD2=BC2+CD2﹣2BC?CD?cos∠DCB,得()2=(40)2+x2﹣2?40?x?cos120°整理得:x2﹣20x﹣800=0,解之得x=40或x=﹣20(舍)即电视塔AB的高度为40米.【点评】本题给出实际应用问题,求电视塔AB的高度.着重考查了测量中的有关概念、解直角三角形和余弦定理等知识,属于中档题.20.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,用表示分数,求的概率分布。参考答案:解:可能取的值为0,1,2,3,4,从袋中随机地取2个球,包含的基本事件总数为。
,,,,随机变量的分布列为0123421.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.参考答案:【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法;三角函数的最值.【分析】(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1化为f(x)=sin(2x+),即可求得函数f(x)的最小正周期;(2)可分析得到函数f(x)在区间[]上是增函数,在区间[,]上是减函数,从而可求得f(x)在区间[]上的最大值和最小值.【解答】解:(1)∵f(x)=sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滨州医学院《新媒体综合运营》2023-2024学年第一学期期末试卷
- 滨州学院《融媒体创意坊》2023-2024学年第一学期期末试卷
- 毕节幼儿师范高等专科学校《综合英语:生工食品药学1》2023-2024学年第一学期期末试卷
- 北京中医药大学东方学院《中学生物教材分析》2023-2024学年第一学期期末试卷
- 个人房屋租赁合同精简版
- 视频监控合同书
- 二零二五年光伏发电合同能源管理合作协议2篇
- 2024至2030年伸缩型画架项目投资价值分析报告
- 电动车租赁合同
- 资方项目居间协议居间合同标准版
- 大学写作智慧树知到期末考试答案章节答案2024年丽水学院
- NB-T31022-2012风力发电工程达标投产验收规程
- 苏教版六年级上册科学期末测试卷带答案
- 中式婚宴主题宴会设计方案策划(2篇)
- 媒介与性别文化传播智慧树知到期末考试答案章节答案2024年浙江工业大学
- 我会举手来发言(教案)2023-2024学年心理健康一年级
- 形势与政策中国式现代化论文1500字
- 应急预案监理实施细则
- 基于英语学习活动观的高中英语课堂教学实践
- 焊工职业技能鉴定考试题库及答案
- 2024年4月自考00159高级财务会计试题
评论
0/150
提交评论