下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市鸦沟中学2021年高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.
B.
C.
D.参考答案:A设双曲线C:-=1的半焦距为,则.又C的渐近线为,点P(2,1)在C的渐近线上,,即.又,,C的方程为-=1.2.向面积为S的△ABC内任投一点P,求△PBC的面积小于的概率为(
)A.
B.
C.
D.参考答案:B略3.已知实数满足则的最大值是.
A.
B.
C.
D.参考答案:C略4.命题“”为真命题的一个充分不必要条件是(
)A.
B.
C.
D.参考答案:C5.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为
(
)参考答案:【知识点】几何体的三视图.
G2【答案解析】C
解析:由三棱锥的俯视图与侧视图可知,此三棱锥的直观图如下,所以该三棱锥的正视图可能为C.故选C.【思路点拨】由三棱锥的俯视图与侧视图可得此三棱锥的直观图,从而得此三棱锥的的正视图的形状.6.在下列向量组中,可以把向量表示出来的是(
)A.
B.
C.
D.
参考答案:B7.已知双曲线C1:﹣y2=1,双曲线C2:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,M是双曲线C2一条渐近线上的某一点,且OM⊥MF2,若C1,C2的离心率相同,且S=16,则双曲线C2的实轴长为()A.4 B.8 C.16 D.32参考答案:C【考点】双曲线的简单性质.【分析】求得双曲线C1的离心率,求得双曲线C2一条渐近线方程为y=x,运用点到直线的距离公式,结合勾股定理和三角形的面积公式,化简整理解方程可得a=8,进而得到双曲线的实轴长.【解答】解:双曲线C1:﹣y2=1的离心率为,设F2(c,0),双曲线C2一条渐近线方程为y=x,可得|F2M|===b,即有|OM|==a,由S=16,可得ab=16,即ab=32,又a2+b2=c2,且=,解得a=8,b=4,c=4,即有双曲线的实轴长为16.故选:C.8.设三位数n=,若以a,b,c为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n有(
)
A.45个
B.81个
C.165个
D.216个参考答案:C解:⑴等边三角形共9个;⑵等腰但不等边三角形:取两个不同数码(设为a,b),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b<a<2b.a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C.9.由曲线y=x2+1、直线y=﹣x+3,x轴与y轴所围成图形的面积为()A.3 B. C. D.参考答案:B【考点】6G:定积分在求面积中的应用.【分析】求出交点坐标,利用定积分知识,即可求解.【解答】解:曲线y=x2+1、直线y=﹣x+3联立可得x2+x﹣2=0,∴x=﹣2或1,∴由曲线y=x2+1、直线y=﹣x+3,x轴与y轴所围成图形的面积为+=+2=,故选B.【点评】本题考查了利用定积分求曲边梯形的面积,关键是利用定积分表示出面积.10.已知的图象过点(2,1),则函数
的值域为………………(
)A.
B.
C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知点,椭圆与直线交于点、,则的周长为__________参考答案:812.若变量x,y满足约束条件且z=5y-x的最大值为a,最小值为b,a-b的值是____________参考答案:解析:本题主要考查线性规划的应用,意在考查考生对基础知识的掌握.约束条件表示以(0,0),(0,2),(4,4),(8,0)为顶点的四边形区域,检验四个顶点的坐标可知,当x=4,y=4时,a=zmax=5×4-4=16;当x=8,y=0时,b=zmin=5×0-8=-8,∴a-b=24.13.已知定义域为R的函数满足,且,
则=
;参考答案:14.在△ABC中,D为AB的一个三等分点,AB=3AD,AC=AD,CB=3CD,则cosB=.参考答案:【考点】余弦定理.【专题】计算题;转化思想;数形结合法;解三角形.【分析】令AC=AD=1,CD=m>0,可求AB=3,BC=3m,利用余弦定理可得关于cosA的等式,解得m的值,利用余弦定理即可求cosB的值.【解答】解:令AC=AD=1,CD=m>0,则:AB=3,BC=3m,则利用余弦定理可得:.∴.故答案为:.【点评】本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,数形结合思想,属于中档题.15.若直线y=kx+b是曲线y=ex+2的切线,也是曲线y=ex+1的切线,则b=.参考答案:4﹣2ln2【考点】利用导数研究曲线上某点切线方程.【分析】设直线y=kx+b与y=ex+2和y=ex+1的切点分别为和,分别求出切点处的直线方程,由已知切线方程,可得方程组,解方程可得切点的横坐标,即可得到b的值.【解答】解:设直线y=kx+b与y=ex+2和y=ex+1的切点分别为和,则切线分别为,,化简得:,,依题意有:,所以.故答案为:4﹣2ln2.【点评】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求得导数和设出切点是解题的关键,考查运算能力,属于中档题.16.已知函数,,则的最小值为_____________.参考答案:1略17.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.现有一元人民币3张,五元人民币2张,拾元人民币4张,伍拾元人民币1张,从中至少取一张(多取不限),共可取得多少种不同的币值?参考答案:解析:注意到取2张五元人民币与取1张拾元人民币币值相同,不能算为两种不同取法。为避免重复,将4张拾元人民币“换作”8张五元人民币,1张五十元人民币“换作”10张五元人民币。于是所给问题等给于:有1元人民币3张、五元人民币20元,从中至少取一张(多取不限),可取得多少种不同币值?
将取币的过程看作二重选择过程:从3张1元人民币中有取0、1、2、3张等4种不同取法,从20张五元人民币中有取0,1,2,…,20张等21种不同取法。于是由乘法原理知,有4×21=84种不同币值。但是,这是须除去1元和五元都没有的情形,因此,共可取得83种不同币值。
点评:注意从中学习问题转化的策略。19.(12分)记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15.(1)求{an}的通项公式;(2)求Sn,并求Sn的最小值.参考答案:解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.
20.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.参考答案:解:(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域内,属于几何概型.该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为,其图形如图中的△OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D,∴△OAD的面积为S1=×3×=.∴所求事件的概率为P===.略21.(本题满分14分)如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥.(Ⅰ)若点是棱的中点,求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.参考答案:(Ⅰ)因为点是菱形的对角线的交点,所以是的中点.又点是棱的中点,所以.
(2分)因为平面,平面,所以平面.
(4分)(Ⅱ)由题意,,因为,所以,.(5分)又因为菱形,所以,.建立空间直角坐标系,如图所示..所以(6分)设平面的法向量为,则有即:令,则,所以.(8分)因为,所以平面.平面的法向量与平行,所以平面的法向量为.(9分),因为二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境卫生保安工作总结
- 印刷品包装质量检测技术
- 2024年设备监理师考试题库附答案(夺分金卷)
- 2024年设备监理师考试题库带答案ab卷 (一)
- 《高级财务会计》复习大纲
- 分布式能源系统合作开发合同(2篇)
- 通关08 跨学科主题专练(解析版)
- 第4单元 经济大危机和第二次世界大战(B卷·能力提升练)(解析版)
- 2025聘用劳动合同标准版
- 2024年度天津市公共营养师之三级营养师能力测试试卷B卷附答案
- 西安信息职业大学《工程管理导论》2023-2024学年第一学期期末试卷
- CNC技理考(含答案)
- 电气领域知识培训课件
- 金融产品分类介绍
- 2024-2025学年上学期深圳初中语文七年级期末模拟卷2
- 河南省郑州市2024-2025学年高一数学上学期期末考试试题含解析
- BOSS GT-6效果处理器中文说明书
- 浙江省杭州市拱墅区2023-2024学年六年级(上)期末数学试卷
- 2024广东烟草专卖局校园招聘笔试管理单位遴选500模拟题附带答案详解
- 2024房地产合同更名申请表
- 突发事件及自救互救学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论