下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市石口乡中学2021年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知{an}的前n项和为Sn,且,则=()A.-3 B.1 C.4 D.6参考答案:C【分析】根据题意分别取和时带入即可计算出。【详解】由题意得:当时,。当时,【点睛】本题主要考查了前项和以及递推公式。充分理解项和以及递推公式是解决本题的关键。属于基础题。2.已知,,直线,若直线过线段AB的中点,则a=(
)A.-5 B.5 C.-4 D.4参考答案:B【分析】根据题意先求出线段的中点,然后代入直线方程求出的值.【详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【点睛】本题考查了直线过某一点求解参量的问题,较为简单.3.已知,,,则的大小关系是(
)A.
B.
C.
D.参考答案:A略4.在等差数列{an}中,若,则(
)A.4 B.6 C.8 D.10参考答案:B【分析】由等差数列性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.5.直线y+3=0的倾斜角是()A.0° B.45° C.90° D.不存在参考答案:A【考点】直线的倾斜角.【分析】由直线y+3=0与x轴平行,即可得出倾斜角.【解答】解:因为直线y+3=0与x轴平行,所以倾斜角为0°.故选:A.6.长方体的一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积是(
)A、B、C、D、参考答案:A略7.两地相距,且地在地的正东方。一人在地测得建筑在正北方,建筑在北偏西;在地测得建筑在北偏东,建筑在北偏西,则两建筑和之间的距离为(
)A.
B.
C.
D.参考答案:C略8.以下四个命题中,正确的有几个(
)①
直线a,b与平面a所成角相等,则a∥b;②
两直线a∥b,直线a∥平面a,则必有b∥平面a;③
一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④
两点A,B与平面a的距离相等,则直线AB∥平面a
A0个
B1个
C2个
D3个参考答案:A略9.已知,且,则的最小值为(
)A.3 B.5 C.7 D.9参考答案:C【分析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?()﹣1,化简整理再由基本不等式即可得到最小值.【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2()﹣1=2(21≥3+47.当且仅当x,y=4取得最小值7.故选:C.【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.10.等腰直角三角形,直角边长为.以斜边所在直线为旋转迪,将该直角三角形旋转一周所得几何的体积是(
)A. B. C.π D.参考答案:B【分析】画出图形,根据圆锥的体积公式直接计算即可.【详解】如图为等腰直角三角形旋转而成的旋转体.由题得等腰直角三角形的斜边上的高为1.所以.故选:.【点睛】本题主要考查圆锥的体积公式,考查空间想象能力以及计算能力,意在考查学生对这些知识的理解掌握水平.二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域是______________.参考答案:略12.若幂函数的图象经过点,那么这个函数的解析式是
.参考答案:
13.已知函数是偶函数,则
.参考答案:-214.在平面区域内任意取一点,则的概率是参考答案:略15.函数的定义域为
▲
.
参考答案:
16.已知正方形ABCD的边长为1,以顶点A为起点,其余顶点为终点的向量记为(i=1,2,3),则|+|(i,j=1,2,3,i≠j)的最大值是,以C为顶点,其余顶点为终点的向量记为(m=1,2,3),若t=(),其中i,j,m,n均属于集合{1,2,3},且i≠j,m≠n,则t的最小值为
.参考答案:﹣5考点:平面向量数量积的运算.专题:平面向量及应用.分析:如图建立直角坐标系.不妨记以A为起点,其余顶点为终点的向量为(i=1,2,3),分别为,以C为起点,其余顶点为终点的向量为(m=1,2,3),分别为.再分类讨论当i,j,m,n取不同的值时,利用向量的坐标运算计算|+|的最大值和()最小值.解答: 解:不妨记以A为起点,其余顶点为终点的向量为其余顶点为终点的向量为(i=1,2,3),分别为,以C为起点,其余顶点为终点的向量为(m=1,2,3),分别为.如图建立坐标系.(1)当i=1,j=2,m=1,n=2时,则+=(1,0)+(1,1)=(2,1),|+|=;()=[(1,0)+(1,1)]?[((﹣1,0)+(﹣1,﹣1)]=﹣5;(2)当i=1,j=2,m=1,n=3时,则()=[(1,0)+(1,1)]?[((﹣1,0)+(0,﹣1)]=﹣3;(3)当i=1,j=2,m=2,n=3时,则()=[(1,0)+(1,1)]?[((﹣1,﹣1)+(0,﹣1)]=﹣4;(4)当i=1,j=3,m=1,n=2时,则+=((1,0)+(0,1)=(1,1),|+|=;()=[(1,0)+(0,1)]?[((﹣1,0)+(﹣1,﹣1)]=﹣3;同样地,当i,j,m,n取其它值时,|+|=,,()=﹣5,﹣4,或﹣3.则|+|最大值为;()的最小值是﹣5.故答案为:;﹣5.点评:本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能17.如图,在平面上,点,点在单位圆上,,若,四边形的面积用表示,则的取值范围为
.
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数(1)求k的值;(2)设g(x)=log4(a?2x﹣a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.参考答案:【考点】函数的图象.【分析】(1)根据偶函数的定义建立方程关系即可求k的值;(2)根据函数f(x)与g(x)的图象有且只有一个公共点,即可得到结论.【解答】解(1)∵函数f(x)=log4(4x+1)+kx(k∈R))是偶函数∴f(﹣x)=log4(4﹣x+1)﹣kx)=log4()﹣kx=log4(4x+1)+kx(k∈R)恒成立∴﹣(k+1)=k,则k=.(2)g(x)=log4(a?2x﹣a),函数f(x)与g(x)的图象有且只有一个公共点,即方程f(x)=g(x)只有一个解由已知得log4(4x+1)x=log4(a?2x﹣a),
∴log4()=log4(a?2x﹣a),方程等价于,设2x=t,t>0,则(a﹣1)t2﹣﹣1=0有一解若a﹣1>0,设h(t)=(a﹣1)t2﹣﹣1,∵h(0)=﹣1<0,∴恰好有一正解∴a>1满足题意若a﹣1=0,即a=1时,h(t)=﹣﹣1,由h(t)=0,得t=﹣<0,不满足题意若a﹣1<0,即a<1时,由,得a=﹣3或a=,当a=﹣3时,t=满足题意当a=时,t=﹣2(舍去)综上所述实数a的取值范围是{a|a>1或a=﹣3}.19.(12分)已知以点C(1,﹣2)为圆心的圆与直线x+y﹣1=0相切.(1)求圆C的标准方程;(2)求过圆内一点P(2,﹣)的最短弦所在直线的方程.参考答案:(1)圆的半径r==,所以圆的方程为(x﹣1)2+(y+2)2=2.(2)圆的圆心坐标为C(1,﹣2),则过P点的直径所在直线的斜率为﹣,由于过P点的最短弦所在直线与过P点的直径垂直∴过P点的最短弦所在直线的斜率为2,∴过P点的最短弦所在直线的方程y+=2(x﹣2),即4x﹣2y﹣13=0.20.如图所示,在直三棱柱ABC-A1B1C1中,,点D是AB的中点.(1)求证:;(2)求证:平面.参考答案:(1)见解析;(2)见解析【分析】(1)利用为直三棱柱,得,利用,说明,得平面,推出;(2)连接,,设,得为的中点,证得,即可证明平面.【详解】(1)直三棱柱中,底面三边长,,且,,又,平面,平面.平面
,平面,;(2)连接,,设,得为的中点,连接,且点D是AB的中点.,平面平面,平面.【点睛】本题考查直线与平面垂直的判定定理,直线与直线垂直,直线与平面平行的判定定理,属于中档题.21.在△ABC中,角A,B,C所对的边分别是a,b,c,若sin2B+sin2C=sin2A+sinBsinC,且·=4,求△ABC的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考古遗址桥梁保护协议
- 债权转为股权投资协议
- 2025版电子商务供应链金融合作协议3篇
- 高铁建设机械费施工合同
- 联营合作项目管理误区
- 运输企业社会责任与可持续发展
- 临时娱乐市场建设合同
- 雕塑艺术任课教师聘用合同
- 宠物行业经纪人招聘协议
- 招投标项目环境保护要求
- 穿越河流工程定向钻专项施工方案
- 地球物理学进展投稿须知
- 机床精度检验标准 VDI3441 a ISO230-2
- 社会主义新农村建设建筑废料利用探究
- 解析电力施工项目的信息化管理
- 火炬介绍 音速火炬等
- 制剂申请书(共16页)
- 《质量守恒定律》评课稿
- 人教版七年级上册地理《第4章居民与聚落 第3节人类的聚居地——聚落》课件
- 对县委常委班子及成员批评意见范文
- 数据中心IDC项目建议书
评论
0/150
提交评论