下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市汾阳峪道河中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用反证法证明命题“若,则a,b全为0”,其反设正确的是(
)A.a,b全不为0
B.a,b至少有一个为0C.a,b不全为0
D.a,b中只有一个为0参考答案:C2.下列四个散点图中,相关系数最大的是
A
B
C
D参考答案:C3.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2 B.e C. D.ln2参考答案:B【考点】导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.4.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16参考答案:C【考点】E7:循环结构.【分析】列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.5.已知复数z满足条件:(1+2i)z=1,则z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则和几何意义即可得出.【解答】解:∵(1+2i)z=1,∴(1﹣2i)(1+2i)z=1﹣2i,∴5z=1﹣2i,∴z=.∴复数z对应点坐标为位于第四象限.故选:D.6.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是(
).
.CC
.C-C
.A-A参考答案:C7.棱长都是1的三棱锥的表面积为()
A.B.C.D.参考答案:A8.两直线与平行,则它们之间的距离为A.
B.
C.
D.参考答案:D9.“金导电、银导电、铜导电、铁导电,所以一切金属都导电”,此推理方法是(
)A.类比推理
B.归纳推理
C.演绎推理
D.分析法参考答案:B10.直线x+y+m=0的倾斜角是
A.
B.
C.
D.
参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数有极值,则实数的取值范围为
参考答案:或12.设复数z满足i(z+1)=-3+2i,则z的实部是________.参考答案:1略13.若椭圆的离心率是,则的值等于
参考答案:
14.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是
.参考答案:
甲
15.已知等差数列{an}的前n项和为Sn,_____;参考答案:70【分析】设等差数列的公差为,由等差数列的通项公式,结合可列出两个关于的二元一次方程,解这个二元一次方程组,求出的值,再利用等差数列的前项和公式求出的值.【详解】设等差数列的公差为,由可得:,【点睛】本题考查了等差数列基本量的求法,熟记公式、正确解出方程组的解,是解题的关键.本题根据等差数列的性质,可直接求解:,.16.已知函数,关于方程(为正实数)的根的叙述有下列四个命题:①存在实数,使得方程恰有3个不同的实根②存在实数,使得方程恰有4个不同的实根③存在实数,使得方程恰有5个不同的实根④存在实数,使得方程恰有6个不同的实根其中真命题的个数是(
)A0
B
1
C
2
D
3参考答案:D17.已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若∥,则平行于内的所有直线;③若,且⊥,则⊥;④若,,则⊥;⑤若,且∥,则∥.其中正确命题的序号是
.(把你认为正确命题的序号都填上)参考答案:①④(漏选一个扣两分)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,,其中e是自然常数.(1)判断函数在内零点的个数,并说明理由;(2),,使得不等式成立,试求实数m的取值范围.参考答案:(1)见解析;(2).试题分析:(1)对函数求导,,得到函数在上单调递增,根据零点存在定理得到函数存在一个零点;(2)不等式等价于,即,对两边的函数分别求导研究单调性,求得最值得到取得最大值,取得最小值,故只需要,解出即可.解析:(1)函数在上零点的个数为1,理由如下:因为,所以,因为,所以,所以函数在上单调递增.因为,,根据函数零点存在性定理得函数在上存在1个零点.(2)因为不等式等价于,所以,,使得不等式成立,等价于,即,当时,,故在区间上单调递增,所以当时,取得最小值,又,当时,,,,所以,故函数在区间上单调递减.因此,当时,取得最大值,所以,所以,所以实数的取值范围为.点睛:导数问题经常会遇见恒成立或者有解求参的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).19.已知圆C的一条直径的端点分别是M(-2,0),N(0,2).(1)求圆C的方程;(2)过点P(1,-1)作圆C的两条切线,切点分别是A、B,求的值.参考答案:(1)依题意可知圆心C的坐标为(-1,1),圆C的半径为,∴圆C的方程为(x+1)2+(y-1)2=2.
………6分(2)PC==2=2AC.∴在Rt△PAC中,∠APC=30°,PA=,可知∠APB=2∠APC=60°,PB=,∴=·cos60°=3.
………12分20.(本小题满分12分)已知函数.(1)若曲线在点处的切线与直线平行,求实数的值;(2)若函数在处取得极小值,且,求实数的取值范围.参考答案:(1)a=2;(2)(1),由(2)由①当,即时,函数在上单调递增,在上单调递减,在上单调递增即函数在处取得极小值②当,即时,函数在上单调递增,无极小值,所以③当,即时,函数在上单调递增,在上单调递减,在上单调递增即函数在处取得极小值,与题意不符合即时,函数在处取得极小值,又因为,所以.21.已知函数.(1)若函数存在不小于3的极小值,求实数m的取值范围;(2)当时,若对,不等式恒成立,求实数a的取值范围.参考答案:(1);(2).【分析】(1)利用导数分析函数的单调性,求出函数的极值,然后令极值大于等于,解出不等式可得出实数的取值范围;(2)构造函数,问题等价于,对实数进行分类讨论,分析函数在区间上的单调性,结合条件可得出实数的取值范围.【详解】(1)函数的定义域为,.当时,,函数在区间上单调递减,此时,函数无极值;当时,令,得,又当时,;当时,.所以,函数在时取得极小值,且极小值为.令,即,得.综上所述,实数的取值范围为;(2)当时,问题等价于,记,由(1)知,在区间上单调递减,所以区间上单调递增,所以,①当时,由可知,所以成立;②当时,的导函数为恒成立,所以在区间上单调递增,所以.所以,函数在区间上单调递增,从而,命题成立.③当时,显然在区间上单调递增,记,则,当时,,所以,函数在区间上为增函数,即当时,.,,所以在区间内,存在唯一的,使得,且当时,,即当时,,不符合题意,舍去.综上所述,实数的取值范围是.【点睛】本题考查利用导数求函数的极值,以及利用导数研究函数不等式恒成立问题,常利用分类讨论法,利用导数分析函数的单调性,转化为函数的最值来求解,考查分类讨论思想的应用,属于难题.22.已知函数f(x)=(λx+1)lnx﹣x+1.(Ⅰ)若λ=0,求f(x)的最大值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得函数的定义域为(0,+∞),当λ=0,f(x)=lnx﹣x+1,求导,令f′(x)=0,根据函数的单调性可知,当x=1时,f(x)取最大值;(Ⅱ)求导,f′(1)=1,即λ=1,由(Ⅰ)可知,lnx﹣x﹣1<0,分类当0<x<1时,f(x)=(x+1)lnx﹣x﹣1=xlnx+(lnx﹣x+1)<0,当x>1时,f(x)=lnx+(xlnx﹣x+1)=lnx﹣x(ln﹣+1)>0,可知.【解答】解:(Ⅰ)由f(x)的定义域为(0,+∞),当λ=0,f(x)=lnx﹣x+1,求导,f′(x)=﹣1,令f′(x)=0,解得:x=1,∴当0<x<1时,f′(x)>0,∴f(x)在(0,1)上是增函数;当x>1,f′(x)<0,∴f(x)在(1,+∞)上是减函数;故f(x)在x=1处取最大值,f(1)=0,(Ⅱ)证明:求导,f′(x)=λlnx+﹣1,曲线y=f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度旅游业务合作与景区开发合同2篇
- 2024年度二建建筑项目工程贷款合同
- 二零二四年度劳动合同:高级管理人员的雇佣
- 二零二四年度建筑材料供应与货运服务合同
- 2024年度个人二手房分期付款购销合同
- 二零二四年度农产品加工设备租赁合同
- 实验室服务合同范本
- 建筑装饰与建筑可持续发展的关系考核试卷
- 构建绿色工作环境保障员工职业健康与环保权益考核试卷
- 数码印刷技术的发展趋势考核试卷
- 污水井雨水井清洁操作规程
- 应用文写作-海报
- 母校回忆录PPT模板课件
- 糖尿病中西医结合治疗
- 全国职业院校教师教学能力比赛PPT模板-蓝色优雅
- 有限空间监理实施细则
- 二手房屋买卖物品交接清单
- 家畜育种新技术
- 小学生汽车发展史新能源课件
- 王贵启-玉米田杂草发生发展及除草剂优解-合肥0728
- 常见心理问题的识别培训课件
评论
0/150
提交评论