下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市汾阳冀村镇冀村中学2021年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线:A.
B.
C.
D.参考答案:D略2.已知扇形的圆心角为,半径等于20,则扇形的弧长为()A.4π B. C.2π D.参考答案:A【考点】弧长公式.【分析】根据扇形的弧长公式进行求解即可.【解答】解:∵扇形的圆心角为,半径等于20,∴扇形的弧长l=rα=20×=4π.故选A.3.已知全集,集合,则为().A.
B.
C.
D.参考答案:C4.两直线与平行,则它们之间的距离为(
) A.
B.
C.
D.参考答案:D略5.如图所示,从一个半径(1+)m的圆形纸板中切割出一块中间是正方形,四周是四个正三角形的纸板,以此为表面(舍弃阴影部分)折叠成一个正四棱锥,则该四棱锥的体积是()m3.A. B. C. D.参考答案:A【考点】棱柱、棱锥、棱台的体积.【分析】由折叠前的图形知,底面正方形ABCD,侧面正△PAB,斜高PM,AB:PM=2:,由AB+PM=(1+)m,得AB=2m,PM=m,从而得出四棱锥的高和体积.【解答】解:如图,在四棱锥P﹣ABCD中,底面正方形ABCD,侧面正△PBC,斜高PM,AB:PM=2:,且AB+PM=(1+)m,则AB=2m,h==m,所以,该四锥体的体积为:V=?S正方形ABCD?h=?(2m)2?m=m3.故选:A.6.已知函数sin(ωx﹣)﹣cos(ωx﹣)(ω>0)图象的两相邻对称轴间的距离为.(I)求f()的值;(II)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)图象,求g(x)在区间[0,]上的单调性.参考答案:【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H5:正弦函数的单调性;HJ:函数y=Asin(ωx+φ)的图象变换.【分析】(I)利用两角差的正弦函数以及诱导公式化简函数的表达式,图象的两相邻对称轴间的距离为,求出函数的周期,求出ω然后,直接求f()的值;(II)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)图象,求出函数的解析式.然后求出函数的单调区间,即可求g(x)在区间[0,]上的单调性.【解答】解:(I)函数sin(ωx﹣)﹣cos(ωx﹣)=2sin(ωx﹣﹣)=2sin(ωx﹣)=﹣2cos(ωx)…由条件两相邻对称轴间的距离为.所以T=π,,所以ω=2,∴f(x)=﹣2cos2x,f()=﹣…(II)函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)图象,所以g(x)=﹣2cos(2x﹣),令2kπ﹣π≤2x﹣≤2kπ,k∈Z,解得kπ≤x≤kπ,k∈Z又x∈[0,]所以g(x)在[0,]上递减,在[]上递增…7.下列向量组中,能作为平面内所有向量的基底的是()A.=(0,0),=(1,﹣2) B.=(﹣1,2),=(5,7)C.=(3,5),=(6,10) D.=(2,﹣3),=(4,﹣6)参考答案:B【考点】平面向量的基本定理及其意义.【分析】可以作为基底的向量需要是不共线的向量,可以从向量的坐标发现A,D,C选项中的两个向量均共线,得到正确结果是B.【解答】解:可以作为基底的向量是不共线的向量,A中一个向量是零向量,两个向量共线,不合要求,C中两个向量是2=,两个向量共线,不合要求,D选项中的两个向量是2=,也共线,不合要求;故选:B.8.在下列区间中,函数f(x)=3x﹣2的零点所在的区间为()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)参考答案:B【考点】二分法的定义.【分析】运用零点判定定理,判定区间.【解答】解:∵f(0)=1﹣2=﹣1<0,f(1)=3﹣2=1>0,∴f(0)?f(1)<0,∴函数f(x)的零点所在的区间为(0,1)故选:B.9.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.29 B.17 C.12 D.5参考答案:B【分析】根据程序框图依次计算得到答案【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.
10.若奇函数满足则(
)A.0
B.1
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若不等式ax2+bx+2>0的解集为,则a-b=________.参考答案:-1012.若函数f(x)=4x3-ax+3的单调递减区间是,则实数a的值为
.参考答案:313.已知函数,当时有最大值1,则
。参考答案:3或14.在中,若,则角的大小为
.参考答案:略15.定义在(﹣∞,0)∪(0,+∞)的奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f(x)<0的解集是.参考答案:{x|x<﹣1或0<x<1}【考点】奇偶性与单调性的综合.【分析】先根据其为奇函数,得到在(﹣∞,0)上的单调性;再借助于f(﹣1)=﹣f(1)=0,即可得到结论.【解答】解:∵定义在(﹣∞,0)∪(0,+∞)的奇函数,且在(0,+∞)上是增函数,∴在(﹣∞,0)上也是增函数;又∵f(﹣1)=﹣f(1)=0.∴f(x)<0的解集为:{x|x<﹣1或0<x<1}.故答案为:{x|x<﹣1或0<x<1}.16.在⊿ABC中,已知a=,则∠B=
▲
参考答案:
60o或120o;
17.已知U={x|x>﹣1},A={x||x﹣2|<1},则?UA=
.参考答案:{x|﹣1<x≤1或x≥3}【考点】补集及其运算.【分析】求出A中不等式的解集确定出A,根据全集U求出A的补集即可.【解答】解:∵U={x|x>﹣1},A={x||x﹣2|<1}={x|1<x<3},∴?UA={x|﹣1<x≤1或x≥3},故答案为:{x|﹣1<x≤1或x≥3}三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知,计算:(1)(2)参考答案:略19.在游学活动中,在处参观的第1组同学通知在处参观的第2组同学:第1组正离开处向的东南方向游玩,速度约为20米/分钟.已知在的南偏西75°方向且相距200米,第2组同学立即出发沿直线行进并用10分钟与第组同学汇合.(1)设第2组同学行进的方位角为,求.(方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)(2)求第2组同学的行进速度为多少?参考答案:见解析.(1)假设第2组同学与第1组同学在处汇合,如图,建立数学模型,则,米,∴,是等腰三角形,∴,∴,.()在中,由余弦定理可得:.∴,故第2组同学的行进速度为米/分钟.20.(14分)已知数列是首项的等比数列,其前项和中,,成等差数列,(1)求数列的通项公式;(2)设,若,求证:.参考答案:解:(1)若,则显然,,不构成等差数列.--2分∴,当时,由,,成等差数列得∴
,∵∴
---------------------------------------------5分∴
--------------------------------------6分(2)∵∴------------------------------------8分∴==-----------------11分,是递增数列..
---------------------------------14分21.已知圆C经过坐标原点,且与直线x﹣y+2=0相切,切点为A(2,4).(1)求圆C的方程;(2)若斜率为﹣1的直线l与圆C相交于不同的两点M,N,求的取值范围..参考答案:【考点】9P:平面向量数量积的坐标表示、模、夹角;J8:直线与圆相交的性质;J9:直线与圆的位置关系.【分析】(1)解法一:求出直线AC的方程,再求出线段OA的垂直平分线方程,联立方程组求出圆心C的坐标,可得圆的半径,从而写出C的方程.解法二:设圆C的方程为(x﹣a)2+(y﹣b)2=r2,根据点A和点O在圆上,圆心到切线的距离等于半径建立方程组,求出a、b、r的值从而求出C的方程.(2)解:设直线l的方程为y=x+m,M(x1,y1),N(x2,y2),把直线方程代入圆的方程利用根与系数的关系求出x1+x2和x1?x2的值,代入的解析式化简为(m﹣6)2.再根据圆心到直线的距离小于半径求出m的范围,即可得到(m﹣6)2的距离.【解答】(1)解法一:圆的圆心为C,依题意得直线AC的斜率KAC=﹣1,∴直线AC的方程为y﹣4=﹣(x﹣2),即x+y﹣6=0.∵直线OA的斜率KOA==2,∴线段OA的垂直平分线为y﹣2=(x﹣1),即x+2y﹣5=0.解方程组得圆心C的坐标为(7,﹣1).∴圆C的半径为r=|AC|==5,∴圆C的方程为(x﹣7)2+(y+1)2=50.解法二:设圆C的方程为(x﹣a)2+(y﹣b)2=r2,依题意得,解得
,∴圆的方程为:(x﹣7)2+(y+1)2=50.(2)解:设直线l的方程为y=﹣x+m,M(x1,y1),N(x2,y2).由消去y得2x2﹣(2m+16)x+m2+2m=0.∴x1+x2=m+8,.∴=(x1﹣2)(x2﹣2)+(y1﹣4)(y2﹣4)=(x1﹣2)(x2﹣2)+(﹣x1+m﹣4)(﹣x2+m﹣4)=2x1?x2﹣(m﹣2)(x1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可合同标的为漫画改编权
- 2024年度房屋租赁合同租金调整机制保证
- 造纸用打浆机市场需求与消费特点分析
- 电钻的钻头市场需求与消费特点分析
- 2024年度产品外观设计分包合同
- 2024年度工业地坪施工合同
- 2024年度承包商与塔吊司机之间的争议解决合同
- 2024年度房屋租赁合同涉及的租金押金退还合同
- 2024年度供应链管理服务合同(含0个以上供应商)
- 2024年度博物馆藏品运输保险合同
- 北京市朝阳区2024-2025学年九年级上学期期末模拟考试化学试卷(含解析)
- 金融时间序列
- 网络安全防护策略与指南
- 农产品溯源体系构建
- 2024全新物业服务培训
- 装饰图案(第2版)课件 李健婷 模块7、8 装饰图案的组织形式装饰图案在现代设计中的应用
- 期末 (试题) -2024-2025学年人教PEP版英语六年级上册
- 2024年安徽交通控股集团招聘笔试参考题库含答案解析
- 老版入团志愿书表格(空白)
- 软件安全之恶意代码机理与防护-武汉大学中国大学mooc课后章节答案期末考试题库2023年
- 马及时《王几何》课文原文
评论
0/150
提交评论