版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市枣岭中学2021年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数,若,则实数=
A.或
B.或
C.或
D.或参考答案:A2.已知函数()满足,且的导函数<,则<的解集为
(
)A.
B.
C.
D.
参考答案:D略3.正整数N除以正整数m后的余数为n,记为,例如.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入时,则输出N=(
)A.28 B.31 C.33 D.35参考答案:B【分析】先理解给出的定义,然后根据程序框图寻求内涵的规律,计算可求.【详解】根据程序框图可知,输入25,然后寻找除以3和5都余1的数,可知31符合要求,退出循环体,故选B.【点睛】本题主要考查程序框图的识别,一般处理策略是逐步验算得出结果,或者观察其含有的规律得出一般性结论求解.4.不等式的解集为(
)A.
B.
C.
D.参考答案:A5.在区间[﹣3,3]上任取一个数a,则圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点的概率为(
) A. B. C. D.参考答案:B考点:几何概型.专题:计算题;概率与统计.分析:利用圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点,可得0≤a≤2或﹣6≤a≤﹣4,结合在区间[﹣3,3]上任取一个数a,即可求出概率.解答: 解:圆C1:x2+y2+4x﹣5=0可化为(x+2)2+y2=9,圆心为(﹣2,0),半径为3,圆C2:(x﹣a)2+y2=1,圆心为(a,0),半径为1,∵圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点,∴2≤|a+2|≤4,∴0≤a≤2或﹣6≤a≤﹣4,∵在区间[﹣3,3]上任取一个数a,∴0≤a≤2,∴所求概率为=.故选:B.点评:本题主要考查了几何概型的概率,以及圆与圆有公共点的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.6.下列条件中,能判断两个平面平行的是
(
)
A.一个平面内的一条直线平行于另一个平面;
B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面
D.
一个平面内任何一条直线都平行于另一个平面参考答案:D7.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为(
)A.8
B.9
C.10
D.11参考答案:C8.当时,下面的程序段执行后所得的结果是(
)
A.
B.
C.
D.参考答案:C9.已知正方体ABCD﹣A1B1C1D1棱长为1,点P在线段BD1上,且BP=BD1,则三棱锥P﹣ABC的体积为()A. B. C. D.参考答案:C【考点】棱柱、棱锥、棱台的体积.【分析】P到平面ABCD的距离为,代入棱锥的体积公式计算即可.【解答】解:∵BP=BD1,∴P到平面ABCD的距离d=DD1=,∴VP﹣ABC===.故选:C.10.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣1参考答案:B【考点】进位制.【专题】转化思想;转化法;等差数列与等比数列;算法和程序框图.【分析】根据二进制与十进制的换算关系,把二进制数转化为十进制数,再用等比数列求和得出结果.【解答】解:根据题意,二进制数转化为十进制数为1×22015+1×22014+…+1×22+1×21+1×20=22015+22014+…+22+2+1==22016﹣1.故选:B.【点评】本题主要考查了二进制、等比数列的前n项和公式的应用问题,二进制转换为十进制方法:按权重相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数.二、填空题:本大题共7小题,每小题4分,共28分11.平面∥平面,,,则直线,的位置关系是________。参考答案:平行或异面12.已知,则
.参考答案:380试题分析:因为,所以.考点:二项式定理.13.若椭圆的弦被点(4,2)平分,则此弦所在直线的斜率为________.参考答案:14.已知x,y都是正数,如果xy=15,则x+y的最小值是
.参考答案:2【考点】基本不等式.【专题】转化思想;综合法;不等式.【分析】利用基本不等式的性质即可得出.【解答】解:∵x,y都是正数,xy=15,则x+y=2,当且仅当x=y=时取等号.故答案为:.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.15.若关于的不等式的解集是,则不等式的解集是参考答案:16.下列结论中:①“”为真是“p或q”为真的充分不必要条件
②为真是为假的必要不充分条件③若椭圆=1的两焦点为F1、F2,且弦AB过F1点,则△ABF2的周长为16
④若p为:x∈R,x2+2x+2≤0,则p为:x∈R,x2+2x+2>0
正确的序号是
参考答案:⑴⑷17.设是连续函数,且,则f(x)=
.参考答案:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,椭圆M:的离心率为,且过点,点P在第四象限,A为左顶点,B为上顶点,PA交y轴于点C,PB交x轴于点D.(1)求椭圆M的标准方程;(2)求面积的最大值.参考答案:(1);(2).【分析】(1)由条件可得,,从而可解得椭圆方程;(2)设P(m,n),m>0,n<0,PA:,PB:,可得C(0,),D(),得,可设,可得,令,1,从而可得最值.【详解】(1)由已知得,?,点(,)代入1可得.代入点(,)解得b2=1,a=2∴椭圆C的标准方程:.(2)可得A(﹣2,0),B(0,1).设P(m,n),m>0,n<0,且.PA:,PB:,可得C(0,),D()..由,可设.则令,则,.则.又,当时,.取得最大值,最大值为1.【点睛】本题主要考查椭圆标准方程的求法,考查椭圆和直线相交所形成的三角形的面积计算及面积最大值的求法,考查利用三角换元求最大值,综合性较强,属于较难的题目.求解椭圆中三角形的面积问题,一方面要利用几何关系表示面积,另一方面求出面积的表达后,要选择合适的方法来求最值.19.已知为椭圆的左、右焦点,是椭圆上一点。(1)求的最大值;(2)若且的面积为,求的值;参考答案:(1)(当且仅当时取等号),
(2),
①又
②由①②得20.(本小题满分12分)某化妆品生产企业为了占有更多的市场份额,欲在2013年进行一系列促销活动,经过市场调查和测算,化妆品的年销量x(万件)与年促销费t(万元)之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2013年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本(包括生产费用和固定费用)的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销售完.(1)将2013年的利润y(万元)表示为促销费t(万元)的函数.(2)该企业2013年的促销费投入多少万元时,企业的年利润最大?参考答案:(1)由题意可设,将代入,得∴…………2分∵年生产成本=年生产费用+固定费用,∴年生产成本为当销售x(万件)时,年销售收入为:由题意,生产x万件化妆品正好销售完,由年利润=年销售收入—年生产成本—年促销费,得y=
=
=
=
()……7分
(注释:缺少()扣分1分)(2)
≤(万件),………9分当且仅当,即时,,…………11分∴当年促销费定在7万元时,利润最大…………12分略21.如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.参考答案:【考点】弦切角;相似三角形的性质.【分析】(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;(Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得.利用直角三角形中正切的定义,得到,最后通过内角相等证明出△APC∽△BPA,从而.【解答】解:(Ⅰ)∵PA是切线,AB是弦,∴∠BAP=∠C.又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED.…(Ⅱ)由(Ⅰ)知∠BAP=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿创意油画课程设计
- 托班灯笼绘画课程设计
- 学校健康与营养课程设计
- 幼儿园 消防课程设计
- 小星星洗澡课程设计
- 幼儿园扫珠子课程设计
- 大幅作品课程设计
- 幼儿元宵节的课程设计
- 基于plc的钻床课课程设计
- 小班12月自然课程设计
- 海警法智慧树知到答案章节测试2023年大连海洋大学
- 手机号码段归属地数据库(2016年3月)
- 《借贷记账法》教学设计
- 【试题】人教版二年级下数学暑假每日一练
- 卫生院关于开展满意度调查工作的实施方案
- 纺织材料学选择题
- YY/T 0916.1-2021医用液体和气体用小孔径连接件第1部分:通用要求
- 医务科工作思路(计划)6篇
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- GA 614-2006警用防割手套
- 智慧购物中心整体解决方案
评论
0/150
提交评论