版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
期末复习3
《高等数学I》
第三章中值定理和导数应用重要内容:中值定理
导数应用(单调性,凹凸性)根的存在性,所在区间,唯一性洛比达法则求七种未定式的极限
用中值定理证明某些等式泰勒公式,常用展开式极值问题中值定理,单调性,凹凸性证明不等式1.证明:在(0,1)上有且仅有一根。,则在[0,1]上连续且
由零点定理可知,在(0,1)上至少有一个根证:(先证存在性)设在(0,1)上还有一个根即
在[0,1]上连续,在(0,1)内可导,(0,1)使得但是,不可能有这样的点,故方程在(0,1)上有且仅有一根。(再证唯一性)由罗尔定理可知至少存在一点(0,1),矛盾。也可以不用罗尔定理,直接利用单调性假设2.证明:在证明:(先证存在性)则在上连续且
由零点定理可知,在上至少有一个根内有且仅有一根。设(再证唯一性)在上严格单调递增,上有且仅有一根。因为故方程在3.设,证明.证明:设.则, 所以当时,
,故单调减少,时,
.从而当(方法一)即当时,
单调增加.时,
即故
因此当3.设,证明.证明:设.则由中值定理, 所以当时,
,故单调减少,时,
.从而当即(方法二)课堂上讲解的方法4.设在上连续,在内可导,且求证存在,使得证明:设,则且即在区间上满足罗尔中值定理的条件,,使得又因此有整理后可得.因此存在4.设在上连续,在内有二阶导数,.试证在内至少存在一点,使得证明:由罗尔中值定理知,存在,使得对分别在和上用拉格朗日中值定理,和,使得及.且有知分别存在再在闭区间上对用拉格朗日中值定理,使得知存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030芯片设计企业研发投入市场竞争格局半导体行业盈利模式技术创新发展评价规划建议书
- 2025-2030芝麻酱调味品市场渠道品牌建设区域分布消费者价格敏感度分析
- 2025-2030能源行业节能减排方案设计及产业升级路径与投资回报分析报告
- 2025-2030肉羊矿业行业市场前景研究报告与发展分析
- 2026年房地产法律法规与市场分析试题集
- 2025-2030细胞治疗产品质量控制标准与监管趋势分析报告
- 2026年物流规划分析师笔试题目精讲
- 能源项目投资评估与管理规范(标准版)
- 通信运营商网络优化指南(标准版)
- 医疗护理操作流程与安全指南(标准版)
- 2025年度住院部病区护理部主任述职报告
- 2026新疆阿合奇县公益性岗位(乡村振兴专干)招聘44人笔试备考试题及答案解析
- 单元主题写作素材与运用“劳动光荣”2025-2026学年统编版高一语文必修上册
- 湖南省娄底市期末真题重组卷-2025-2026学年四年级语文上册(统编版)
- 2025年华侨生联考试题试卷及答案
- 幼儿学前班数学寒假作业25
- 2024年钢丝绳索具相关项目创业计划书
- 幼小衔接数学计算每日一练39天(幼儿园大班)
- 基于蛋白代谢多组学探讨参麻益智方治疗高血压合并血管性痴呆大鼠作用机制演示稿件
- 上海布邦流体过滤产品知识课件
- 建筑施工人员三级安全教育
评论
0/150
提交评论