2023届河北容城博奥学校高考数学全真模拟密押卷含解析_第1页
2023届河北容城博奥学校高考数学全真模拟密押卷含解析_第2页
2023届河北容城博奥学校高考数学全真模拟密押卷含解析_第3页
2023届河北容城博奥学校高考数学全真模拟密押卷含解析_第4页
2023届河北容城博奥学校高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.2.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A. B. C. D.3.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.4.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.35.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.126.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.7.如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且 B.直线与直线共面,且C.直线与直线异面,且 D.直线与直线共面,且8.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题9.已知集合,,则A. B.C. D.10.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:①若,,,则;②若,,,则;③若,,,则;④若,,,,则.其中正确的是()A.①② B.②③ C.②④ D.③④11.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.12012.设,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.14.若实数,满足,则的最小值为__________.15.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.16.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.18.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.19.(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.20.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.2、A【解析】

设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.3、D【解析】

利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.4、B【解析】

用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.5、C【解析】

由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。6、D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.7、B【解析】

连接,,,,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,,,,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,,,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.8、B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.9、D【解析】

因为,,所以,,故选D.10、C【解析】

根据线面平行或垂直的有关定理逐一判断即可.【详解】解:①:、也可能相交或异面,故①错②:因为,,所以或,因为,所以,故②对③:或,故③错④:如图因为,,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为,,所以,所以,故④对.故选:C【点睛】考查线面平行或垂直的判断,基础题.11、B【解析】

画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.12、D【解析】

集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.14、【解析】

由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.15、【解析】

利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.16、【解析】

不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a,求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为中点,E为AB的三等分点(靠近点A),设棱长为a,,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1):,:;(2)【解析】

(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得.设,对应的参数分别为,,所以,在的两侧.则.【点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.18、(1);(2)存在,【解析】

(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.【详解】(1)由题可得∴,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,,∴,,∴若以为直径的圆经过点,则,∴,化简得,∴,解得或因为与不重合,所以舍.所以直线的方程为.【点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆上,根据椭圆的方程代入斜率之积的表达式列式求解即可.(Ⅱ)设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详解】(Ⅰ)设,,则,又,,故,即,故,又,故.故椭圆的标准方程为.(Ⅱ)设直线的方程为,,由,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线斜率,再换元利用基本不等式求解.属于难题.20、(1)证明见详解;(2)【解析】

(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,,,平面平面平面..平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,,,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论