版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ReviewofLinearAlgebra
IntroductiontoMatlabMachineLearningGroup
Fall2014OutlineLinearAlgebraBasicsMatrixCalculusSingularValueDecomposition(SVD)EigenvalueDecompositionLow-rankMatrixInversionMatlabessentialsBasicconceptsVectorinRnisanorderedsetofnrealnumbers.e.g.v=(1,6,3,4)isinR4Acolumnvector:Arowvector:m-by-nmatrixisanobjectinRmxnwithmrowsandncolumns,eachentryfilledwitha(typically)realnumber:BasicconceptsVectornorms:Anormofavector||x||isinformallyameasureofthe“length”ofthevector.Commonnorms:L1,L2(Euclidean)LinfinityBasicconceptsVectordot(inner)product:Vectorouterproduct:WewilluselowercaselettersforvectorsTheelementsarereferredbyxi.Ifu•v=0,||u||2!=0,||v||2!=0
uandvareorthogonalIfu•v=0,||u||2=1,||v||2=1
uandvareorthonormalBasicconceptsMatrixproduct:Wewilluseuppercaselettersformatrices.TheelementsarereferredbyAi,j.e.g.Specialmatricesdiagonalupper-triangulartri-diagonallower-triangularI(identitymatrix)BasicconceptsTranspose:Youcanthinkofitas“flipping”therowsandcolumns OR“reflecting”vector/matrixonlinee.g.Linearindependence(u,v)=(0,0),i.e.thecolumnsarelinearlyindependent.Asetofvectorsislinearlyindependentifnoneofthemcanbewrittenasalinearcombinationoftheothers.Vectorsv1,…,vkarelinearlyindependentifc1v1+…+ckvk=0impliesc1=…=ck=0e.g.x3=−2x1+x2SpanofavectorspaceIfallvectorsinavectorspacemaybeexpressedaslinearcombinationsofasetofvectorsv1,…,vk,thenv1,…,vk
spansthespace.Thecardinalityofthissetisthedimensionofthevectorspace.Abasisisamaximalsetoflinearlyindependentvectorsandaminimalsetofspanningvectorsofavectorspace(0,0,1)(0,1,0)(1,0,0)e.g.RankofaMatrixrank(A)(therankofam-by-nmatrixA)isThemaximalnumberoflinearlyindependentcolumns=Themaximalnumberoflinearlyindependentrows=Thedimensionofcol(A)=Thedimensionofrow(A)IfAisnbym,thenrank(A)<=min(m,n)Ifn=rank(A),thenAhasfullrowrankIfm=rank(A),thenAhasfullcolumnrankInverseofamatrix
InverseofasquarematrixA,denotedbyA-1istheuniquematrixs.t.AA-1=A-1A=I(identitymatrix)
IfA-1andB-1exist,then(AB)-1=B-1A-1,(AT)-1=(A-1)T
FororthonormalmatricesFordiagonalmatricesDimensionsByThomasMinka.OldandNewMatrixAlgebraUsefulforStatisticsExamples/
SingularValueDecomposition
(SVD)AnymatrixAcanbedecomposedasA=UDVT,whereDisadiagonalmatrix,withd=rank(A)non-zeroelements ThefistdrowsofUareorthogonalbasisforcol(A)ThefistdrowsofVareorthogonalbasisforrow(A)ApplicationsoftheSVDMatrixPseudoinverseLow-rankmatrixapproximationEigenValueDecompositionAnysymmetricmatrixAcanbedecomposedasA=UDUT,where
Disdiagonal,withd=rank(A)non-zeroelementsThefistdrowsofUareorthogonalbasisforcol(A)=row(A)Re-interpretingAb
Firststretchbalongthedirectionofu1byd1timesThenfurtherstretchitalongthedirectionofu2byd2timesLow-rankMatrixInversionInmanyapplications(e.g.linearregression,Gaussianmodel)weneedtocalculatetheinverseofcovariancematrixXTX(eachrowofn-by-mmatrixXisadatasample)Ifthenumberoffeaturesishuge(e.g.eachsampleisanimage,#samplen<<#featurem)invertingthem-by-mXTXmatrixbecomesanproblemComplexityofmatrixinversionisgenerallyO(n3)Matlabcancomfortablysolvematrixinversionwithm=thousands,butnotmuchmorethanthatLow-rankMatrixInversion
WiththehelpofSVD,weactuallydoNOTneedtoexplicitlyinvertXTXDecomposeX=UDVTThenXTX=VDUTUDVT=VD2VTSinceV(D2)VTV(D2)-1VT=IWeknowthat(XTX)-1=V(D2)-1VTInvertingadiagonalmatrixD2istrivial/
BasicsDerivativesDecompositionsDistributions…MATrixLABoratoryMostlyusedformathematicallibrariesVeryeasytodomatrixmanipulationinMatlabIfthisisyourfirsttimeusingMatlabStronglysuggestyougothroughthe“GettingStarted”partofMatlabhelpManyusefulbasicsyntaxMakingArrays%Asimplearray>>[12345]ans:12345>>[1,2,3,4,5]ans:12345>>v=[1;2;3;4;5]v=12345
>>v’ ans:12345>>1:5ans:12345>>1:2:5ans:135>>5:-2:1ans:531>>rand(3,1)ans:0.03180.27690.0462MakingMatrices%Allthefollowingareequivalent>>[123;456;789]>>[1,2,3;4,5,6;7,8,9]>>[[12;45;78][3;6;9]]>>[[123;456];[789]]ans: 123 456 789MakingMatrices%Creatingallones,zeros,identity,diagonalmatrices>>zeros(rows,cols)>>ones(rows,cols)>>eye(rows)>>diag([123])%CreatingRandommatrices>>rand(rows,cols)%Unif[0,1]>>randn(rows,cols)%N(0,1)%Make3x5withN(1,4)entries>>2*randn(3,5)+1%Getthesize>>[rows,cols]=size(matrix);AccessingElementsUnlikeC-likelanguages,indicesstartfrom1(NOT0)>>A=[123;456;789]ans: 123 456 789%AccessIndividualElements>>A(2,3)ans:6%Access2ndcolumn(:meansallelements)>>A(:,2)ans: 2 5 8AccessingElementsA= 123 456 789Matlabhascolumn-order>>A([1,3,5]) ans:175>>A([1,3],2:end)ans: 23 89>>A(A>5)=-1ans: 123 45-1 -1-1-1>>A(A>5)=-1ans:7869>>[ij]=find(A>5)i=3j= 13 22 33 3MatrixOperationsA= 123 456 789>>A+2*(A/4)ans: 1.50003.00004.5000 6.00007.50009.0000 10.500012.000013.5000>>A./Aans: 111 111 111>>A’>>A*AissameasA^2>>A.*B>>inv(A)>>A/B,A./B,A+B,…%SolvingSystems(A+eye(3))\[1;2;3]%inv(A+eye(3))*[1;2;3]ans: -1.0000 -0.0000 1.0000PlottinginMatlab%LetsplotaGauss
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电子商务客户关系管理系统集成合同3篇
- 二零二五年环保设施工程设计合同补充协议3篇
- 二零二五版中药材抚育承包合作合同3篇
- 二零二五年绿色环保外架爬架租赁与施工合同3篇
- 二零二五年教育资源共享与销售合同样本3篇
- 二零二五版房地产项目土地二级开发与销售合同协议书3篇
- 二零二五版企业内部股权交易及管理服务合同2篇
- 二零二五年酒店集团年度客户关系管理合作合同范本2篇
- 二零二五年船舶开荒保洁与设备维护合同范本3篇
- 二零二五版废弃物处理厂环境监测与治理服务合同3篇
- 建筑保温隔热构造
- 智慧财务综合实训
- 安徽省合肥市2021-2022学年七年级上学期期末数学试题(含答案)3
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
- 肝脏肿瘤护理查房
- 护士工作压力管理护理工作中的压力应对策略
- 2023年日语考试:大学日语六级真题模拟汇编(共479题)
- 皮带拆除安全技术措施
- ISO9001(2015版)质量体系标准讲解
- 《培训资料紧固》课件
- 黑龙江省政府采购评标专家考试题
评论
0/150
提交评论