版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省烟台市龙口第十中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆的左、右焦点为,离心率为,过的直线交于两点,若的周长为,则的方程为(
)21世纪教育网
A.
B.
C.
D.
参考答案:A2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1 B.2 C.3 D.4参考答案:B【考点】球内接多面体;由三视图求面积、体积;球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r.【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则8﹣r+6﹣r=,∴r=2.故选:B.【点评】本题考查三视图,考查几何体的内切圆,考查学生的计算能力,属于基础题.3.函数的图像关于直线对称的充要条件是(
)A.
B.
C.
D.参考答案:A略4.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥α,则n∥α B.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥α D.若m⊥n,m⊥α,n⊥β,则α⊥β参考答案:D【考点】2K:命题的真假判断与应用;LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】A选项m∥n,m∥α,则n∥α,可由线面平行的判定定理进行判断;B选项α⊥β,m∥α,则m⊥β,可由面面垂直的性质定理进行判断;C选项α⊥β,m⊥β,则m∥α可由线面的位置关系进行判断;D选项a⊥b,a⊥α,b⊥β,则α⊥β,可由面面垂直的判定定理进行判断;【解答】解:A选项不正确,因为n?α是可能的;B选项不正确,因为α⊥β,m∥α时,m∥β,m?β都是可能的;C选项不正确,因为α⊥β,m⊥β时,可能有m?α;D选项正确,可由面面垂直的判定定理证明其是正确的.故选D【点评】本题考查线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力,属基础题.5.曲线y=x5+3x2+4x在x=-1处的切线的倾斜角是 (
)A.-
B.
C.
D.参考答案:C略6.设分别是定义在R上的奇函数和偶函数,且分别是的导数,当时,且,则不等式的解集是(
)A.(-6,0)∪(6,+∞) B.(-6,0)∪(0,6)C.(-∞,-6)∪(0,6) D.(-∞,-6)∪(6,+∞)参考答案:C【分析】构造函数,判断函数的单调性和奇偶性,脱离即可求得相关解集.【详解】根据题意,可设,则为奇函数,又当时,所以在R上为增函数,且,转化为,当时,则,当,则,则,故解集是,故选C.【点睛】本题主要考查利用抽象函数的相关性质解不等式,意在考查学生的分析能力和转化能力,难度中等.7.已知n为正偶数,用数学归纳法证明时,若已假设为偶数)时命题为真,则还需要用归纳假设再证 (
) A.时等式成立 B.时等式成立 C.时等式成立 D.时等式成立参考答案:B略8.函数是(A)周期为的奇函数
(B)周期为的偶函数(C)周期为的奇函数
(D)周期为的偶函数参考答案:A9.某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是
(
).6,16,26,36,46,56
.3,10,17,24,31,38
.4,11,18,25,32,39
.5,14,23,32,41,50参考答案:A分6组,每组10个班,间隔为1010.已知实数a、b满足“a>b”,则下列不等式中正确的是(
)A.|a|>|b|
B.a2>b2
C.a3>b3
D.>1参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知空间向量,则_________.参考答案:略12.用一张矩形的纸片分别围成两个不同的圆柱形纸筒Ⅰ、Ⅱ,纸筒Ⅰ的侧面积为24,纸筒Ⅱ的底面半径为3,则纸筒的Ⅱ的容积为
。参考答案:3613.在△ABC中,角A,B,C所对的边分别是a,b,c,设S为△ABC的面积,S=(a2+b2﹣c2),则C的大小为.参考答案:【考点】余弦定理.【分析】根据正弦定理关于三角形面积的公式结合余弦定理化简题中的等式,可得sinC=cosC.再由同角三角函数的基本关系,得到tanC=,结合C∈(0,π)可得C=,得到本题答案.【解答】解:∵△ABC的面积为S=absinC,∴由S=(a2+b2﹣c2),得(a2+b2﹣c2)=absinC,即absinC=(a2+b2﹣c2)∵根据余弦定理,得a2+b2﹣c2=2abcosC,∴absinC=×2abcosC,得sinC=cosC,即tanC==∵C∈(0,π),∴C=故答案为:14.已知x>3,则+x的最小值为.参考答案:7【考点】基本不等式.【专题】不等式的解法及应用.【分析】本题可以通过配凑法将原式化成积为定值的形式,再用基本不等式求出原式的最小值,即本题答案.【解答】解:∵x>3,∴x﹣3>0.∴+x=≥.当且仅当x=5时取最值.故答案为:7.【点评】本题考查了基本不等式,注意不等式使用的条件.本题难度适中,属于中档题.15.已知函数f(x)=(x2+x﹣1)ex,则f(x)的极大值为.参考答案:【考点】利用导数研究函数的极值.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极大值即可.【解答】解:∵f(x)=(x2+x﹣1)ex,∴f′(x)=(x2+3x)ex,由f′(x)<0,得﹣3<x<0;由f′(x)>0,得x>0或x<﹣3,因此,f(x)的极大值为f(﹣3)=,故答案为:.16.
参考答案:.
提示:设中边上的高(即到距离)为,则
.
又求得
.
设到平面的距离为,
于是,由
得到
=,
∴.
∴17.点到直线的距离为_______.参考答案:;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在中,的对边分别是,已知.(1)求的值;(2)若求的面积参考答案:解:(1)法一:由已知及正弦定理
所以
………6分
(2),由,
由已知a=1,b+c=2
19.已知二次函数,当时,有.(1)求和的值(2)解不等式参考答案:(1)
(2)20.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记“”为事件A,求事件A的概率.参考答案:(1).(2).【分析】(1)根据古典概型概率公式求取到标号为2的小球的概率,列方程解得的值;(2)根据古典概型概率公式求结果.【详解】(1)依题意共有小球个,标号为2的小球个,从袋子中随机抽取1个小球,取到标号为2的小球概率为,得.(2)从袋子中不放回地随机抽取2个小球,标号为2的小球记为,则所有可能的结果为,,,,,,,,,,,,共有12种,而满足的结果有8种,故.21.我国《算经十书》之一《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?答曰:二十三.”你能用程序解决这个问题吗?参考答案:设物共m个,被3,5,7除所得的商分别为x、y、z,则这个问题相当于求不定方程
的正整数解.m应同时满足下列三个条件:(1)mMOD3=2;(2)mMOD5=3;(3)mMOD7=2.因此,可以让m从2开始检验,若3个条件中有任何一个不成立,则m递增1,一直到m同时满足三个条件为止.程序:m=2f=0WHILE
f=0IF
mMOD3=2
AND
mMOD5=3AND
mMOD7=2
THENPRINT
“物体的个数为:”;mf=1ELSEm=m+1END
IFWENDEND无22.设:方程有两个不等的负根,:方程无实根,若p或q为真,p且q为假,求的取值范围.参考答案:解:若P为真,则,
…………2分解得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【教案】部编语文三上7 听听秋的声音【国家级】一
- 员工三级安全培训
- 医疗器械质检教学
- 《通风工程》课件
- 小学三年级数学两位数乘两位数笔算水平作业练习题大全附答案
- 前叉韧带重建手术
- 福建省福州市高三下学期毕业班3月质量检测(一模)化学试题
- 社区背景资料来源社会工作专业教学案例宝典
- 婴幼儿记忆的发生长沙民政李鑫
- 中医异位妊娠保守治疗
- 校园周边接送交通管理制度
- 2024年定制:医疗软件开发与定制服务合同
- 2024年消防月全员消防安全知识专题培训-附20起典型火灾案例
- 中国寰球工程有限公司招聘笔试题库2024
- 人教版八年级数学上册第15章《分式》全部教案(共12课时)
- 2024年社区工作者考试题库及答案
- 电子信息工程专业大学生生涯发展展示
- 10以内口算100道题共16套-直接打印版
- 配电工程管理中常见问题有效解决措施探讨
- 物业公司群体上访事件应急预案
- 生产作业指导书
评论
0/150
提交评论