版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.3.已知集合,,则A. B. C. D.4.已知复数,为的共轭复数,则()A. B. C. D.5.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.6.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-27.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.28.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)A.0.110 B.0.112 C. D.9.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③ B.①③④ C.①②④ D.②③④10.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.11.复数满足,则复数在复平面内所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知复数满足,(为虚数单位),则()A. B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.14.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.15.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.16.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.19.(12分)设数列是等差数列,其前项和为,且,.(1)求数列的通项公式;(2)证明:.20.(12分)设函数,(1)当,,求不等式的解集;(2)已知,,的最小值为1,求证:.21.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.22.(10分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
设,整理得到方程组,解方程组即可解决问题.【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.2.C【解析】
根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.3.C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.4.C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.5.D【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.6.D【解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.7.A【解析】
利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.8.C【解析】
根据题意知,,代入公式,求出即可.【详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.9.B【解析】
首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,又∵和的图象都关于对称,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正确,②错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.10.D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.11.B【解析】
设,则,可得,即可得到,进而找到对应的点所在象限.【详解】设,则,,,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.12.A【解析】,故,故选A.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】试题分析:显然,又,①当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而②当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是.考点:不等式、简单线性规划.14.4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为415.【解析】
先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.16.【解析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18.(1)极小值为,极大值为.(2)【解析】
(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可求得结果.【详解】(1)函数的定义域为,,,,可知,,解得,,可知在,时,,函数单调递增,在时,,函数单调递减,可知函数的极小值为,极大值为.(2)可以变形为,可得,可知函数在上单调递减,,可得,设,,可知函数在单调递减,,可知,可知参数的取值范围为.【点睛】本题考查由切线的斜率求参数的值,以及对具体函数极值的求解,涉及构造函数法,以及利用导数求函数的值域;第二问的难点在于对目标式的变形,属综合性中档题.19.(1)(2)见解析【解析】
(1)设数列的公差为,由,得到,再结合题干所给数据得到公差,即可求得数列的通项公式;(2)由(1)可得,再利用放缩法证明不等式即可;【详解】解:(1)设数列的公差为,∵,∴,∴,∴.(2)∵,∴,∴.【点睛】本题考查等差数列的通项公式的计算,放缩法证明数列不等式,属于中档题.20.(1)或;(2)证明见解析【解析】
(1)将化简,分类讨论即可;(2)由(1)得,,展开后再利用基本不等式即可.【详解】(1)当时,,所以或或解得或,因此不等式的解集的或(2)根据,当且仅当时,等式成立.【点睛】本题考查绝对值不等式的解法、利用基本不等式证明不等式问题,考查学生基本的计算能力,是一道基础题.21.(I);(II).【解析】
试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.22.(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供应链管理合同:某制造企业与供应商就供应链管理达成的合作协议
- 瓷砖产品定制生产合同2024
- 2024版无人机技术研发与购销合同
- 电商平台安全检测与合规认证服务合同3篇
- 二零二四年度光伏发电项目投资合同标的及投资金额具体说明2篇
- 二零二四年度畜牧养殖业养殖饲料采购与供应合同
- 二零二四年健身教练个人劳动合同
- 二零二四年度设备采购合同标的为高端计算机设备
- 二零二四年度亚洲区域网络安全保障合作合同
- 二零二四年企业咨询服务框架协议
- 2024年安全员C证考试题库附答案
- 医学课件麻醉与血液
- 《进一步规范管理燃煤自备电厂工作方案》发改体改〔2021〕1624号
- 苏教版五上复式统计表课件
- 2024至2030年中国防爆配电箱行业市场发展现状及前景趋势与投资战略研究报告
- 第13课 清前中期的兴盛与危机【课件】-中职高一上学期高教版2023
- 2024年山东省高考物理试卷(真题+答案)
- 急救在身边智慧树知到期末考试答案章节答案2024年山东第一医科大学
- 2024企业集采业务交易平台解决方案
- 道德与法治(新疆卷)(全解全析)-2024年中考考前押题密卷
- 酒店网络安全管理制度
评论
0/150
提交评论