版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,则的值是()A. B. C.4 D.2.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.3.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为()A.6里 B.12里 C.24里 D.48里4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种5.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.6.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.7.若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则A.-3,1 B.-3,5 C.-∞,-38.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.9.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]10.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.11.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.12.若函数有两个极值点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量,,且,则向量与的夹角的大小为________.14.已知a,b均为正数,且,的最小值为________.15.已知数列满足,,若,则数列的前n项和______.16.已知复数,其中为虚数单位,则的模为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.(1)若,求直线AP与平面所成角;(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.18.(12分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度19.(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.20.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.21.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.22.(10分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】由,可得,所以数列是公比为的等比数列,所以,则,则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.2.C【解析】
画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.3.C【解析】
设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程.【详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里.故选:C.【点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.4.C【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.5.A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.6.A【解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.7.D【解析】
画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)【详解】画出曲线x=y-2+1与y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)设k=y+1x-2,结合图形可得k≥k由题意得点A,B的坐标分别为A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范围为-∞,-3故选D.【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-28.B【解析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.9.D【解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10.B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.11.D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.12.A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.14.【解析】
本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.15.【解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,∴,∴,∴,∴,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.16.【解析】
利用复数模的计算公式求解即可.【详解】解:由,得,所以.故答案为:.【点睛】本题考查复数模的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)存在,Q为线段中点【解析】
解法一:(1)作出平面与平面的交线,可证平面,计算,,得出,从而得出的大小;(2)证明平面,故而可得当Q为线段的中点时.解法二,以为原点,以为建立空间直角坐标系:(1)由,利用空间向量的数量积可求线面角;(2)设上存在一定点Q,设此点的横坐标为,可得,由向量垂直,数量积等于零即可求解.【详解】(1)解法一:连接交于,设与平面的公共点为,连接,则平面平面,四边形是正方形,,平面,平面,,又,平面,为直线AP与平面所成角,平面,平面,平面平面,,又为的中点,,,,直线AP与平面所成角为.(2)四边形正方形,,平面,平面,,又,平面,又平面,,当Q为线段中点时,对于任意的实数,都有.解法二:(1)建立如图所示的空间直角坐标系,则,,所以,,,又由,,则为平面的一个法向量,设直线AP与平面所成角为,则,故当时,直线AP与平面所成角为.(2)若在上存在一定点Q,设此点的横坐标为,则,,依题意,对于任意的实数要使,等价于,即,解得,即当Q为线段中点时,对于任意的实数,都有.【点睛】本题考查了线面垂直的判定定理、线面角的计算,考查了空间向量在立体几何中的应用,属于中档题.18.【解析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆,………4分直线方程的普通方程为,………8分圆C的圆心到直线l的距离,……………10分故直线被曲线截得的线段长度为.……………14分19.(1)(2)【解析】
(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题.20.(1);(2)1.【解析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.【详解】(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB≠0,所以sinA=cosA,即:tanA=,因为A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周长a+b+c=5+7=1.【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.21.(1)p=2;(2)见解析(3)见解析【解析】
(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.【详解】(1)n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舞蹈简单易学高效课程设计
- 设计幼儿园教育课程设计
- 衢州餐饮加盟合同范例
- 假离婚协议书的特点与风险3篇
- 团建公司兼职合同范例
- 二手房产买卖合同模版3篇
- 光伏行业劳动合同模板3篇
- 商铺营业转让合同3篇
- 仔猪买卖合同范本3篇
- 地合同闲置分析3篇
- 《班主任工作常规》课件
- 初中英语期末考试方法与技巧课件
- 四年级上册综合实践试题-第一学期实践考查卷 粤教版 含答案
- 油烟管道清洗服务承诺书
- 卷积神经网络讲义课件
- 山东师范大学《英语语言学》期末复习题
- 考研快题系列一(城市滨水广场绿地设计)
- HTML5CSS3 教案及教学设计合并
- 青岛版六三二年级上册数学乘加乘减解决问题1课件
- 汽车机械基础课件第五单元机械传动任务二 链传动
- 电子课件机械基础(第六版)完全版
评论
0/150
提交评论