版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖北省襄阳市宜城一中寄宿制学校高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在斜三棱柱ABC﹣A1B1C1的底面△ABC中,∠BAC=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在()A.直线AC上 B.直线AB上 C.直线BC上 D.△ABC内部参考答案:B【考点】直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】由条件,根据线面垂直的判定定理,AC⊥平面ABC1,又AC在平面ABC内,根据面面垂直的判定定理,平面ABC⊥平面ABC1,则根据面面垂直的性质,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.【解答】解:如图:∵∠BAC=90°,∴AC⊥AB,∵BC1⊥AC,∴AC⊥BC1,而BC1、AB为平面ABC1的两条相交直线,根据线面垂直的判定定理,AC⊥平面ABC1,又AC在平面ABC内,根据面面垂直的判定定理,平面ABC⊥平面ABC1,则根据面面垂直的性质,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.故选:B【点评】本题主要考查空间中线面垂直、面面垂直的判定定理与性质定理,属于中档题.2.若x是第一象限角,则的最小值为(
)A.
B.2
C.2
D.4参考答案:B3.已知复数z满足(i为虚数单位),则z的虚部为(
)A.i
B.-1
C.-i
D.1参考答案:D4.已知函数
若,则(
)A.
B.
C.或
D.1或参考答案:C5.下列命题正确的是(
)A.若,则
B.若,则
C.若,则
D.若,则
参考答案:D,选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错.6.下列函数中,在区间(0,+∞)上为增函数的是(
)A. B.C. D.参考答案:C【分析】根据初等函数图象可排除;利用导数来判断选项,可得结果.【详解】由函数图象可知:选项:;选项:在上单调递减,可排除;选项:,因为,所以,可知函数在上单调递增,则正确;选项:,当时,,此时函数单调递减,可排除.本题正确选项:【点睛】本题考查函数在区间内单调性的判断,涉及到初等函数的知识、利用导数来求解单调性的问题.7.设,经计算可得
.观察上述结果,可得出的一般结论是()A.
B.C.
D.参考答案:C略8.某几何体的三视图如右图所示,它的体积为(
)
A.
B.
C.
D.参考答案:A略9.甲船在岛B的正南方A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是(
)A.21.5分钟
B.分钟 C. 分钟 D.2.15分钟参考答案:C略10.如右图所示,一个空间几何体的主视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的全面积为() A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.(5分)把x=﹣1输入如图所示的流程图可得输出y的值是.参考答案:1∵框图的作用是计算分段函数的值y=,∴当x=﹣1时,不满足条件x<0,故y=1.故答案为:1.12.已知棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离为________________.参考答案:1【分析】以D点为原点,的方向分别为轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面的法向量,代入向量点到平面的距离公式,即可求解。【详解】以为坐标原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,则,,,所以,,,设
是平面的法向量,则,即,令,可得,故,设点在平面上的射影为,连接,则是平面的斜线段,所以点到平面的距离.【点睛】本题主要考查了空间向量在求解距离中的应用,对于利用空间向量求解点到平面的距离的步骤通常为:①求平面的法向量;②求斜线段对应的向量在法向量上的投影的绝对值,即为点到平面的距离.空间中其他距离问题一般都可转化为点到平面的距离求解.着重考查了推理与运算能力,属于基础题.13.函数的定义域和值域均为(0,+∞),的导数为,且,则的范围是______.参考答案:【分析】构造函数,利用的导数判断出在上为增函数,由得.构造函数,利用的导数判断出在上为减函数,由得.综上所述可得的取值范围.【详解】解:根据题意,设则,又由,则,则函数在上为增函数,则,即,变形可得,设则,又由,则,则函数在上为减函数,则,即,变形可得,综合可得:,即的范围是;故答案为:.【点睛】本小题主要考查构造函数法求表达式的取值范围,考查利用导数研究函数的单调性,属于难题.14.如图,过抛物线的焦点F的直线交抛物线于点A、B,交其准线于点C,若,且,则此抛物线的方程为_____________参考答案:15.已知=2,=3,=4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=.参考答案:41【考点】类比推理.【专题】计算题;压轴题.【分析】观察所给的等式,等号右边是,,…第n个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2,=3,=4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.16.定义:曲线上的点到直线的距离的最小值称为曲线到直线的距离;现已知曲线到直线的距离等于,则实数的值为
.参考答案:略17.用数学归纳法证明:时,从“到”左边需增加的代数式是______________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知{an}的前n项和为Sn,且an+Sn=4.(1)求证:数列{an}是等比数列;(2)是否存在正整数k,使>2成立.参考答案:(1)由题意,Sn+an=4,Sn+1+an+1=4,∴(Sn+1+an+1)-(Sn+an)=0即2an+1-an=0,an+1=an,又2a1=S1+a1=4,∴a1=2.∴数列{an}是以首项a1=2,公比为q=的等比数列.(2)不存在这样的k,使不等式成立略19.(本小题满分14分)已知函数的极小值大于零,其中
,(Ⅰ)求的取值范围.(Ⅱ)若在(Ⅰ)中的取值范围内的任意,函数在区间内都是增函数,求实数的取值范围.(Ⅲ)设,,若,求证参考答案:(Ⅰ)
令
则
x
0
+
0
_
0
+
极大值
极小值
…….6分
(Ⅱ)由(Ⅰ)知内为增函数
或
….10分(Ⅲ)证明:假设则
,
或
矛盾
假设不成立…………….14分略20.设函数f(x)=2xlnx﹣1.(1)求函数f(x)的最小值及曲线f(x)在点(1,f(1))处的切线方程;(2)若不等式f(x)≤3x3+2ax恒成立,求实数a的取值范围.参考答案:【考点】利用导数研究曲线上某点切线方程;函数恒成立问题.【分析】(1)求出函数的导数,求得单调区间,可得极值、最值;求得切线的斜率和切点坐标,由点斜式方程可得切线方程;(2)由题意可得a≥lnx﹣﹣,在(0,+∞)上恒成立,构造函数h(x)=lnx﹣﹣,h′(x)=﹣+=﹣,求解最大值,即可求解a的取值范围.【解答】解:(1)函数f(x)=2xlnx﹣1的导数为f′(x)=2(lnx+1),当x>时,f′(x)>0,f(x)递增;当0<x<时,f′(x)<0,f(x)递减.即有x=取得极小值,也为最小值,且为﹣﹣1;可得曲线f(x)在点(1,f(1))处的切线斜率为k=f′(1)=2,切点为(1,﹣1),曲线f(x)在点(1,f(1))处的切线方程为y+1=2(x﹣1),即为2x﹣y﹣3=0;(2)不等式f(x)≤3x3+2ax恒成立,可得:a≥lnx﹣﹣,在(0,+∞)上恒成立,设h(x)=lnx﹣﹣,h′(x)=﹣+=﹣,h′(x)=0,得:x=1,x=﹣(舍去),当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴当x=1时,h(x)max=﹣2,∴a≥﹣2,∴实数a的取值范围:[﹣2,+∞).21.如图5所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积;(3)证明:平面.参考答案:1)证明:因为平面,所以。因为为△中边上的高,所以。
因为,
所以平面。(2)连结,取中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度海上工程船舶租赁光租赁合同(04版)
- 二零二四年度能源供应合同模板
- 加工合作合同的技术规范
- 培训班合作合规协议
- 转让协议与合同的法律关系探讨
- 农村自建房买卖合同的贷款政策
- 住宅装修工程分包协议
- 沥青路面施工安全措施落实购销合同
- 精密机械转让协议书
- 甲方购销合同操作
- 湖南财政经济学院《证券投资学》2022-2023学年第一学期期末试卷
- 《喜迎建队日 争做好少年》主题班会教案3篇
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- (高级)增材制造设备操作员技能鉴定理论考试题库(浓缩500题)
- 高盛-比亚迪:全球汽车市场上的新兴领先企业-2024-10-企业研究
- DB2327T 097-2024 有机玉米生产技术规程
- 2025届高考英语大作文读后续写写作思路与技巧课件
- 四川省自贡市(2024年-2025年小学三年级语文)人教版期末考试(下学期)试卷(含答案)
- 2024年新北师大版七年级上册数学课件 第六章 6.3 第1课时 扇形统计图
- 第八章食品良好生产规范(GMP)
- 第四单元测试卷(单元测试)-2024-2025学年六年级上册统编版语文
评论
0/150
提交评论