2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析_第1页
2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析_第2页
2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析_第3页
2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析_第4页
2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年浙江省杭州市衢州中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知、为两条不同的直线,、为两个不同的平面,则下列命题中正确的是(

)A.若,,且,则B.若平面内有不共线的三点到平面的距离相等,则C.若,则D.若,则参考答案:D2.设直线与圆相切,则(A).

(B).

(C).

(D).参考答案:A略3.函数的一条对称轴方程是(

) A.

B.

C.

D.参考答案:B略4.已知向量=(,k),=(k﹣1,4),若⊥,则实数k的值为()A. B. C.﹣ D.2参考答案:A【考点】数量积判断两个平面向量的垂直关系.【专题】方程思想;综合法;平面向量及应用.【分析】由题意可得?=(k﹣1)+4k=0,解方程可得.【解答】解:∵向量=(,k),=(k﹣1,4),且⊥,∴?=(k﹣1)+4k=0,解得k=,故选:A.【点评】本题考查平面向量的数量积和垂直关系,属基础题.5.三棱锥P﹣ABC中,底面△ABC满足BA=BC,,P在面ABC的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到面ABC的距离为()A.2 B.3 C. D.参考答案:B【考点】MK:点、线、面间的距离计算;LR:球内接多面体.【分析】设AB=a,棱锥的高为h,根据体积得出a与h的关系,根据勾股定理得出外接球半径R关于h的表达式,利用基本不等式得出R最小值时对应的h的值即可.【解答】解:设AC的中点为D,连接BD,PD,则PD⊥平面ABC,∵△ABC是等腰直角三角形,∴外接球的球心O在PD上,设AB=BC=a,PD=h,外接球半径OC=OP=R,则OD=h﹣R,CD=AC=a,∵VP﹣ABC===,∴a2=,∵CD2+OD2=OC2,即(h﹣R)2+a2=R2,∴R===≥3=,当且仅当即h=3时取等号,∴当外接球半径取得最小值时,h=3.故选:B.【点评】本题考查了棱锥的结构特征,棱锥与球的位置关系,属于中档题.6.命题“且”的否定形式是(

)A.或

B.或C.或

D.且参考答案:C7.由0,1,2,…,9这十个数组成无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为()

A、180

B、196

C、210

D、224参考答案:C8.如果数列,,,…,,…是首项为1,公比为的等比数列,则等于(

)

A.32

B.64

C.-32

D.-64参考答案:A9.设,,若直线与圆相切,则的取值范围是(

)(A)

(B)(C)(D)参考答案:D∵直线与圆相切,∴圆心到直线的距离为,所以,设,则,解得.10.某种商品一年内每件出厂价在7千元的基础上,按月呈的模型波动(为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定的解析式为(

)A.

Ks5u

B.C.

D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.复数的虚部是.参考答案:【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数==,它的虚部为:,故答案为:.【点评】本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.12.若函数的最小值为,最大值为,则=_________.参考答案:【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】函数与分析/函数及其基本性质/函数的基本性质;方程与代数/数列与数学归纳法/数列的极限.【试题分析】因为,所以,所以,.13.已知是正整数,若关于的方程有整数解,则所有可能的取值集合是

.参考答案:14.已知函数f(x)的定义域[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示x﹣10245F(x)121.521下列关于函数f(x)的命题;①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a最多有4个零点.其中正确命题的序号是①②④.参考答案:①②④略15.设函数,则“为奇函数”是“”的

条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

参考答案:略16.若,且,则实数m的值为

.参考答案:1或-3略17.已知满足,则的取值范围是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I)求合唱团学生参加活动的人均次数;(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III)从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.参考答案:解析:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(I)该合唱团学生参加活动的人均次数为.(II)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为.(III)从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件,“这两人中一人参加2次活动,另一人参加3次活动”为事件,“这两人中一人参加1次活动,另一人参加3次活动”为事件.易知

;的分布列:012的数学期望:.19.(14分)(2016秋?天津期中)已知函数f(x)=alnx﹣x+1(a∈R).(1)求f(x)的单调区间;(2)若f(x)≤0在(0,+∞)上恒成立,求所有实数a的值;(3)证明:(n∈N,n>1)参考答案:【考点】利用导数研究函数的单调性.【专题】函数思想;导数的综合应用.【分析】(1)求导,利用导数得出函数单调性;(2)对a进行分类:当a≤0时,f(x)递减,又知f(1)=0可得f(x)>0(x∈(0,1);当a>0时,只需求f(x)max=f(a)=alna﹣a+1,让最大值小于等于零即可;(3)利用(2)的结论,对式子变形可得=<=.【解答】解:(1)f'(x)=当a≤0时,f'(x)<0,f(x)递减;当a>0时,x∈(0,a)时,f'(x)>0,f(x)递增;x∈(a+∞)时,f'(x)<0,f(x)递减;(2)由(1)知,当a≤0时,f(x)递减,∵f(1)=0∴f(x)≤0在(0,+∞)上不恒成立,当a>0时,x∈(0,a)时,f'(x)>0,f(x)递增;x∈(a+∞)时,f'(x)<0,f(x)递减;∴f(x)max=f(a)=alna﹣a+1令g(a)=alna﹣a+1∴g'(a)=lna∴g(a)的最小值为g(1)=0∴alna﹣a+1≤0的解为a=1;(3)由(2)知:lnx<x﹣1x>1∵=<=∴++…+<++…+=.【点评】考察了导函数求单调性和最值问题,利用结论证明不等式问题.难点是对式子的变形整理.20.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.参考答案:【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=?=(,1)?(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T=2π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.21.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=,E,F分别是BC,A1C的中点.(1)求异面直线EF,AD所成角的余弦值;(2)点M在线段A1D上,=λ.若CM∥平面AEF,求实数λ的值.参考答案:【考点】异面直线及其所成的角;直线与平面平行的性质.【分析】(1)建立坐标系,求出直线的向量坐标,利用夹角公式求异面直线EF,AD所成角的余弦值;(2)点M在线段A1D上,=λ.求出平面AEF的法向量,利用CM∥平面AEF,即可求实数λ的值.【解答】解:因为四棱柱ABCD﹣A1B1C1D1为直四棱柱,所以A1A⊥平面ABCD.又AE?平面ABCD,AD?平面ABCD,所以A1A⊥AE,A1A⊥AD.在菱形ABCD中∠ABC=,则△ABC是等边三角形.因为E是BC中点,所以BC⊥AE.因为BC∥AD,所以AE⊥AD.建立空间直角坐标系.则A(0,0,0),C(,1,0),D(0,2,0),A1(0,0,2),E(,0,0),F(,,1).(1)=(0,2,0),=(﹣,,1),所以异面直线EF,AD所成角的余弦值为=.

…(2)设M(x,y,z),由于点M在线段A1D上,且=λ,则(x,y,z﹣2)=λ(0,2,﹣2).则M(0,2λ,2﹣2λ),=(﹣,2λ﹣1,2﹣2λ).

…设平面AEF的法向量为=(x0,y0,z0).因为=(,0,0),=(,,1),由,得x0=0,y0+z0=0.取y0=2,则z0=﹣1,则平面AEF的一个法向量为n=(0,2,﹣1).

…由于CM∥平面AEF,则=0,即2(2λ﹣1)﹣(2﹣2λ)=0,解得λ=.…22.(本题满分12分)甲、乙、丙三个同学同时报名参加某重点高校2014年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论