版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省肇庆市高要蛟塘中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是(
)
A.恰有1名男生与恰有2名女生
B.至少有1名男生与全是男生
C.至少有1名男生与至少有1名女生
D.至少有1名男生与全是女生参考答案:A略2.已知,,,则a,b,c的大小关系是(
)A. B. C. D.参考答案:C因为,,,所以,故选C.
3.在空间直角坐标系中,以点,,为顶点的是以为底边的等腰三角形,则实数的值为(
)A.
B.
C.
D.或参考答案:D4.设函数,若互不相等的实数x1,x2,x3满足,则x1+x2+x3的取值范围是(
)
A.
B.
C.
D.参考答案:A5.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为(A)
(B)1,-1
(C)
(D)参考答案:A∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值.故选A.
6.为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x为().A.90 B.120 C.180 D.200参考答案:D试题分析:先求出每个个体被抽到的概率,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,利用已知在60~70岁这个年龄段中抽查了8人,可以求出抽取的总人数,从而求出x的值.解:60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中可以抽取30人,每个个体被抽到的概率等于:,∵在60~70岁这个年龄段中抽查了8人,可知×160=8,解得x=200,故选D.考点:分层抽样方法.7.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(,),则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是()A.[0,1] B.[1,7] C.[7,12] D.[0,1]和[7,12]参考答案:D【考点】函数单调性的判断与证明.【分析】由动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在[0,12]变化时,点A的纵坐标y关于t(单位:秒)的函数的单调性的变化,从而得单调递增区间.【解答】解:设动点A与x轴正方向夹角为α,则t=0时,每秒钟旋转,在t∈[0,1]上,在[7,12]上,动点A的纵坐标y关于t都是单调递增的.故选D.8.已知圆,圆,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则的最小值为()A. B. C. D.参考答案:A如图所示,两圆为内含关系,将关于轴对称为,连结交圆于,,交轴于,连交圆于,此时最小,最小值为..选.9.若函数为R上的增函数,则实数a的取值范围是(
)A.
B.C.
D.参考答案:A∵函数在上为增函数,∴,解得。∴实数的取值范围是。选A。
10.幂函数y=xm,y=xn,y=xp的图象如图所示,以下结论正确的是(
)A.m>n>p B.m>p>n C.n>p>m D.p>n>m参考答案:C【考点】幂函数的图像.【专题】计算题.【分析】在区间(0,1)上,幂函数的指数越大,图象越靠近x轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x轴.在第一象限作出幂函数y=xm,y=xn,y=xp的图象,数形结合能求出结果.【解答】解:在第一象限作出幂函数y=xm,y=xn,y=xp的图象.在(0,1)内取同一值x0,作直线x=x0,与各图象有交点.则“点低指数大”,如图,知0<p<1,﹣1<m<0,n>1,∴n>p>m故选:C.【点评】本题考查幂函数的图象的应用,是基础题.解题时要认真审题,仔细解答,注意数形结合思想的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.已知,在第二象限内,则的值为_________参考答案:略12.(5分)函数f(x)=Asin(ωx﹣)(A>0,ω>0)的最大值为2,相邻两条对称轴的距离为,则f(x)=
.参考答案:2sin(2x﹣)考点: 正弦函数的图象.专题: 三角函数的图像与性质.分析: 由函数的最大值求出A,由周期求出ω,可得函数的解析式.解答: 由函数的最大值为2,可得A=2,再根据函数的图象相邻两条对称轴之间的距离为,可得?=,求得ω=2,∴函数f(x)=2sin(2x﹣),故答案为:2sin(2x﹣).点评: 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的图象和性质,属于基础题.13.若实数a、b满足|3a﹣1|+b2=0,则ab的值为.参考答案:114.已知某企业职工年收入的频率分布如表所示:试估计该企业职工的平均年收入为________(万元).年收入范围(万元)频率
参考答案:5.1【分析】根据频率分布表中平均数的计算公式,即每组的中点值乘以频率,再将所得的积全部相加可得出该企业职工的平均年收入。【详解】由题意可知,该企业职工的平均年收入为(万元),故答案为:。【点睛】本题考查频率分布表数据的平均数的计算,熟练利用平均数的计算公式是解本题的关键,考查计算能力,属于中等题。15.已知函数,若,则
.参考答案:16.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.参考答案:120扇形的半径为12,故面积为(平方米),填120.17.若函数的定义域为值域为则实数的取值范围为_____________.参考答案:[2,8]略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)三月植树节.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):甲:37,21,31,20,29,19,32,23,25,33;乙:10,30,47,27,46,14,26,10,44,46.(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如右图)进行运算,问输出的S大小为多少?并说明S的统计学意义.参考答案:解:((1)茎叶图4分,两个统计结论4分(2)4分)(1)茎叶图如下甲
乙9100495310267732130
244667统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布比较分散.(2);S表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量.S值越小,表示长得越整齐,S值越大,表示长得越参差不齐.
略19.如图,在平行四边形OABC中,点C(1,3).(1)求OC所在直线的斜率;(2)过点C作CD⊥AB于点D,求CD所在直线的方程.参考答案:【考点】直线的点斜式方程;斜率的计算公式;直线的一般式方程.【分析】(1)根据原点坐标和已知的C点坐标,利用直线的斜率k=,求出直线OC的斜率即可;(2)根据平行四边形的两条对边平行得到AB平行于OC,又CD垂直与AB,所以CD垂直与OC,由(1)求出的直线OC的斜率,根据两直线垂直时斜率乘积为﹣1,求出CD所在直线的斜率,然后根据求出的斜率和点C的坐标写出直线CD的方程即可.【解答】解:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为.∴CD所在直线方程为,即x+3y﹣10=0.20.已知sinβ+cosβ=,且0<β<π.(1)求sinβcosβ、sinβ﹣cosβ的值;(2)求sinβ、cosβ、tanβ的值.参考答案:【考点】同角三角函数基本关系的运用.【分析】(1)把已知等式两边平方,利用完全平方公式化简,整理求出sinβcosβ的值,再利用完全平方公式求出sinβ﹣cosβ的值即可;(2)联立sinβ+cosβ与sinβ﹣cosβ的值,求出sinβ与cosβ,即可确定出tanβ的值.【解答】解:(1)把sinβ+cosβ=①,两边平方得:(sinβ+cosβ)2=1+2sinβcosβ=,∴sinβcosβ=﹣<0,(sinβ﹣cosβ)2=1﹣2sinβcosβ=,∵0<β<π,∴<β<π,即sinβ﹣cosβ>0,则sinβ﹣cosβ=②;(2)联立①②解得:sinβ=,cosβ=﹣,则tanβ=﹣.21.对于二次函数(12分)(1)指出图像的开口方向、对称轴方程、顶点坐标;(2)说明其图像由的图像经过怎样平移得来;(3)求函数的最大值或最小值;(4)分析函数的单调性。参考答案:略22.若y=cos2x+2psinx+q有最大值9和最小值6,求实数p,q的值.参考答案:【考点】三角函数的最值.【专题】综合题.【分析】先令sinx=t将y=cos2x+2psinx+q转化为关于t且t∈[﹣1,1]的一元二次函数,然后求出其对称轴,再对p的值进行讨论从而可确定函数在[﹣1,1]上的单调性,进而根据其最值可求出p,q的值.【解答】解:令sinx=t,t∈[﹣1,1],y=1﹣sin2x+2psinx+qy=﹣(sinx﹣p)2+p2+q+1=﹣(t﹣p)2+p2+q+1∴y=﹣(t﹣p)2+p2+q+1,对称轴为t=p当p<﹣1时,[﹣1,1]是函数y的递减区间,ymax=y|t=﹣1=(﹣1﹣p)2+p2+q+1=9,ymin=y|t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论