版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年山东省临沂市益民实验中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列……的前n项的和为(
)A. B. C. D.参考答案:B2.如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A. B. C. D.参考答案:A【考点】异面直线及其所成的角.【分析】根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.【解答】解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得?=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A3.已知抛物线x2=2py的焦点坐标为,则抛物线上纵坐标为﹣2的点到抛物线焦点的距离为()A. B. C. D.参考答案:D【考点】抛物线的简单性质.【专题】计算题;函数思想;方程思想;圆锥曲线的定义、性质与方程.【分析】先根据抛物线的方程求得准线的方程,进而利用点A的纵坐标求得点A到准线的距离,进而根据抛物线的定义求得答案.【解答】解:依题意可知抛物线的焦点坐标为,准线方程为:y=,∴纵坐标为﹣2的点到准线的距离为2+=,根据抛物线的定义可知纵坐标为﹣2的点与抛物线焦点的距离就是点A与抛物线准线的距离,∴纵坐标为﹣2的点与抛物线焦点的距离为:.故选:D.【点评】本题主要考查了抛物线的定义的运用.考查了学生对抛物线基础知识的掌握.属中档题.4.已知集合,则(
)A、
B、
C、
D、参考答案:A5.在等差数列中,若,则该数列的前2011项的和为
A.2010
B.2011
C.4020
D.4022参考答案:D6.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()A.B.C.D.参考答案:C略7.三棱锥O-ABC中,OA,OB,OC两两垂直,且OA=2,OB=,OC=,则三棱锥O-ABC外接球的表面积为A.4p
B.12p
C.16p
D.40p参考答案:C8.已知,且,则的最小值为(
)A.7
B.8
C.9
D.10参考答案:C9.某公园现有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有
(
)
A.48
B.36
C.30
D.18参考答案:D略10.已知点为双曲线的左顶点,点B和C在双曲线的右支上,△ABC是等边三角形,则△ABC的面积是(
)
参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.若向量与向量共线,且,=,则向量=___
▲
__.参考答案:(2,―4,―2)略12.若样本的方差是2,则样本的方差是
参考答案:813.命题:的否定是
参考答案:14.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.参考答案:【分析】通过分析恰有一个白球分为两类:“甲中一白球乙中一黑球”,“甲中一黑球乙中一白球”,于是分别计算概率相加即得答案.【详解】恰有一个白球分为两类:甲中一白球乙中一黑球,甲中一黑球乙中一白球。甲中一白球乙中一黑球概率为:,甲中一黑球乙中一白球概率为:,故所求概率为.【点睛】本题主要考查乘法原理和加法原理的相关计算,难度不大,意在考查学生的分析能力,计算能力.15.在直角坐标系中任给一条直线,它与抛物线交于两点,则的取值范围为________________.参考答案:16.如果实数满足条件
,那么的最大值为_____.参考答案:217.椭圆上一点到焦点的距离为2,是的中点,则等于
▲
.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在等差数列中,,公差,记数列的前项和为.(1)求;(2)设数列的前项和为,若成等比数列,求.参考答案:解:(1)∵,∴,∴,∴,∴,.(2)若成等比数列,则,即,∴∵,∴.19.已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.(Ⅰ)求的取值范围;(Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值.(14分)参考答案:(Ⅰ)直线的方程为,将,得
.
设直线与抛物线两个不同交点的坐标为、,则
又,∴
.
∵,
∴.
解得
.
(Ⅱ)设AB的垂直平分线交AB于点Q,令坐标为,则由中点坐标公式,得,
.
∴
.
又为等腰直角三角形,∴,
∴
即面积最大值为
20.已知命题:关于的不等式的解集为空集;命题:函数为增函数,若命题为假命题,为真命题,求实数的取值范围.参考答案:解:命题:关于的不等式的解集为空集,所以,即所以
则为假命题时:或;由命题:函数为增函数,所以,所以,则为假命题时:;命题为假命题,为真命题,所以、中一真一假,若真假,则若假真,则,所以实数的取值范围为或.略21.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆一个顶点为A(2,0),离心率为,可建立方程组,从而可求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0,从而可求|MN|,A(2,0)到直线y=k(x﹣1)的距离,利用△AMN的面积为,可求k的值.【解答】解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024门禁工程合同
- 2024闸门采购合同模板大全
- 2024榨菜种植与农业电商人才培训合作合同3篇
- 2025年度文化旅游代理股权转让及项目运营合同4篇
- 2025年度智能社区视频监控系统工程承包协议4篇
- 2025年度应急物流承运商合作协议范本4篇
- 2024音乐制作合同:录音工作室合同范本版B版
- 2025年度桉树苗木线上线下融合发展合同3篇
- 2025年度知识产权运营丨合伙人共同运营专利技术的合同4篇
- 2024舞台建设施工合同协议书
- 2024版智慧电力解决方案(智能电网解决方案)
- 公司SWOT分析表模板
- 小学预防流行性感冒应急预案
- 肺癌术后出血的观察及护理
- 声纹识别简介
- 生物医药大数据分析平台建设-第1篇
- 基于Android的天气预报系统的设计与实现
- 冲锋舟驾驶培训课件
- 美术家协会会员申请表
- 聚合收款服务流程
- 中石化浙江石油分公司中石化温州灵昆油库及配套工程项目环境影响报告书
评论
0/150
提交评论