2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析_第1页
2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析_第2页
2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析_第3页
2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析_第4页
2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年安徽省合肥市第二十中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(如右图)正方体ABCD-A1B1C1D1中,AC与B1D所

成的角为(

)A、

B、

C、

D、参考答案:D略2.已知实数满足则的最小值是(

)(A)5

(B)

(C)

(D)参考答案:C3.某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为()A.8万元 B.10万元 C.12万元 D.15万参考答案:C【考点】频率分布直方图.【分析】由频率分布直方图得0.4÷0.1=4,也就是11时至12时的销售额为9时至10时的销售额的4倍.【解答】解:由频率分布直方图得0.4÷0.1=4∴11时至12时的销售额为3×4=12故选C4.直角三角形绕着它的一条直角边旋转而成的几何体是(

)A.圆锥

B.圆柱

C.圆台

D.球参考答案:A5.已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则(

)A.

B.

C.

D.参考答案:C6.已知等比数列满足,则当等于(

)A.

B.

C.

D.参考答案:C略7.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为A.

B.

C.

D.参考答案:B略8.设b、c表示两条直线,?、?表示两个平面,下列命题中真命题是A.若b??,c∥?,则b∥c B.若b?,b∥c,则c∥? C.若c∥?,c⊥?,则?⊥? D.若c∥?,?⊥?,则c⊥?参考答案:C9.下列各数中与1010(4)相等的数是()A.76(9) B.103(8) C.2111(3) D.1000100(2)参考答案:D10.已知是定义在上的单调函数,且对任意的,都有,则方程的解所在的区间是 (

)A.(0,) B.() C.(2,3) D.(1,2)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗,2面白旗,把这5面旗都挂上去,可表示不同信号的种数是

参考答案:10略12.直线x+2y=0被曲线x2+y2-6x-2y-15=0所截得的弦长等于____________.参考答案:13.已知向量夹角为45°,且,则__________.参考答案:试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14.下列表述:①综合法是执因导果法;②分析法是间接证法;③分析法是执果索因法;④反证法是直接证法.正确的语句是____.参考答案:①③15.在极坐标中,圆的圆心C到直线的距离为____参考答案:16.如图,在三棱锥P-ABC,△ABC为等边三角形,△PAC为等腰直角三角形,PA=PC=4,平面PAC⊥平面ABC,D为AB的中点,则异面直线AC与PD所成角的余弦值为

.参考答案:17.用数学归纳法证明“<,>1”时,由>1不等式成立,推证时,左边应增加的项数是

▲.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足:(为常数,且,).

(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.参考答案:(I)因为所以,当时,,,即以为a首项,a为公比的等比数列,∴.19.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.参考答案:【考点】利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法.【分析】(1)根据导数的几何意义,结合切线方程建立方程关系,求出b,c,d,即可求函数f(x)的解析式;(2)求函数的导数,即可求函数f(x)在定义域上的单调性.【解答】解:(1)由f(x)的图象经过P(0,2),知d=2,所以f(x)=x3+bx2+cx+2,则f'(x)=3x2+2bx+c.由在M(﹣1,f(﹣1))处的切线方程是6x﹣y+7=0,知﹣6﹣f(﹣1)+7=0,即f(﹣1)=1,f'(﹣1)=6∴,即,解得b=c=﹣3,故所求的解析式是f(x)=x3﹣3x2﹣3x+2.(2)∵f(x)=x3﹣3x2﹣3x+2.∴f′(x)=3x2﹣6x﹣3=3(x2﹣2x﹣1).由f′(x)=3(x2﹣2x﹣1)>0,解得x>1+或x<1﹣,此时函数单调递增,由f′(x)=3(x2﹣2x﹣1)<0,解得1﹣<x<1+,此时函数单调递减,即函数的单调递减区间为为(1﹣,1+),函数的单调递增区间为为(﹣∞,1﹣),(1+,+∞).20.(12分)已知向量,函数.(1)求函数的对称中心;(2)在中,分别是角对边,且,且,求的取值范围.参考答案:21.设圆C1的方程为(x+2)2+(y﹣3m﹣2)2=4m2,直线l的方程为y=x+m+2. (1)若m=1,求圆C1上的点到直线l距离的最小值; (2)求C1关于l对称的圆C2的方程; (3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程. 参考答案:【考点】直线与圆的位置关系;关于点、直线对称的圆的方程. 【专题】综合题. 【分析】(1)把m=1代入圆的方程和直线l的方程,分别确定出解析式,然后利用点到直线的距离公式求出圆心到直线l的距离d,发现d大于半径r,故直线与圆的位置关系是相离,则圆上的点到直线l距离的最小值为d﹣r,求出值即可; (2)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可; (3)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线x﹣2y=0上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,综上,得到所有C2所表示的一系列圆的公切线方程. 【解答】解:(1)∵m=1,∴圆C1的方程为(x+2)2+(y﹣5)2=4,直线l的方程为x﹣y+3=0, 所以圆心(﹣2,5)到直线l距离为:, 所以圆C1上的点到直线l距离的最小值为;(4分) (2)圆C1的圆心为C1(﹣2,3m+2),设C1关于直线l对称点为C2(a,b), 则解得:, ∴圆C2的方程为(x﹣2m)2+(y﹣m)2=4m2; (3)由消去m得a﹣2b=0, 即圆C2的圆心在定直线x﹣2y=0上.(9分) ①当公切线的斜率不存在时,易求公切线的方程为x=0; ②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切, 则,即(﹣4k﹣3)m2+2(2k﹣1)bm+b2=0, ∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立, 所以有:解之得:, 所以C2所表示的一系列圆的公切线方程为:, 故所求圆的公切线为x=0或.(14分) 【点评】此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(3)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程. 22.(本题12分)在直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论