版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年安徽省宣城市四合中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域为(
)A.(0,+∞)
B.[0,+∞)
C.(1,+∞)
D.[1,+∞)参考答案:A2.已知等差数列{an}中,Sn是它的前n项和.若S16>0,且S17<0,则当Sn最大时n的值为()A.8
B.9
C.10
D.16参考答案:A略3.已知,则(
)A.2 B.-2 C.3 D.-3参考答案:A【分析】根据同角三角函数的关系,先化为正弦余弦,再转化为正切,代入求值即可.【详解】因为,故选A.4.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54 C.48 D.27参考答案:B【考点】B8:频率分布直方图.【分析】通过图形求出前两组中的频数,求出第三组频数.通过最大频率为0.32,求出a的值.【解答】解:前两组中的频数为100×(0.05+0.11)=16.∵后五组频数和为62,∴前三组频数和为38.∴第三组频数为22.又最大频率为0.32,故频数为0.32×100=32,∴a=22+32=54,故选B.5.已知集合,则等于(
)(A)
(B)(C)
(D)参考答案:C6.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.参考答案:A【分析】先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.△ABC的内角A,B,C的对边分别为a,b,c,边上的中线长为2,则△ABC面积的最大值为(
)A.2 B. C. D.4参考答案:D【分析】作出图形,通过和余弦定理可计算出,于是利用均值不等式即可得到答案.【详解】根据题意可知,而,同理,而,于是,即,又因为,代入解得.过D作DE垂直于AB于点E,因此E为中点,故,而,故面积最大值为4,答案为D.【点睛】本题主要考查解三角形与基本不等式的相关综合,表示出三角形面积及使用均值不等式是解决本题的关键,意在考查学生的转化能力,计算能力,难度较大.8.若,且,则角的终边所在象限是(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D9.若函数的图象经过()可以得到函数的图象.A.向右平移2个单位,向上平移个单位B.向左平移2个单位,向上平移个单位C.向右平移2个单位,向下平移个单位D.向左平移2个单位,向下平移个单位参考答案:C【考点】函数的图象与图象变化.【专题】函数的性质及应用.【分析】把已知函数变形为==,利用“左加右减,上加下减”的变换法则即可得出.【解答】解:∵函数==,∴把函数向右平移2个单位,向下平移个单位即可得到函数的图象.故选C.【点评】本题考查了函数的“左加右减,上加下减”的平移变换法则,属于基础题.10.设函数的图象过点,则a的值------------(
)A.2
B.–2
C.–
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.下列几个命题:①方程的有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④设函数定义域为R,则函数与的图象关于轴对称;⑤一条曲线和直线的公共点个数是,则的值不可能是1.其中正确的为______________(写出相应的序号).参考答案:①⑤
略12.
▲
,
▲
.参考答案:1,2;.
13.为不共线的向量,设条件;条件对一切,不等式恒成立.则是的
条件.参考答案:充要14.对于下列命题:①
函数的图象关于点
对称;②
的单调增区间为;③
已知点N、P在所在平面内,且,则N、P依次是的重心、垂心;④
已知向量,且,则三点一定共线。以上命题成立的序号是__________________.参考答案:①③④.15.已知数列满足,则
参考答案:0略16.已知,则
。参考答案:17.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是______________.参考答案:①④
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.参考答案:【考点】直线和圆的方程的应用;直线的一般式方程.【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x?v(x)可以达到最大,并求出最大值.(精确到1辆/小时).参考答案:【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【专题】应用题.【分析】(Ⅰ)根据题意,函数v(x)表达式为分段函数的形式,关键在于求函数v(x)在20≤x≤200时的表达式,根据一次函数表达式的形式,用待定系数法可求得;(Ⅱ)先在区间(0,20]上,函数f(x)为增函数,得最大值为f=1200,然后在区间[20,200]上用基本不等式求出函数f(x)的最大值,用基本不等式取等号的条件求出相应的x值,两个区间内较大的最大值即为函数在区间(0,200]上的最大值.【解答】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.【点评】本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力,属于中等题.20.(12分)已知函数f(x)=(1)求f(3);(2)求函数y=2f2(x)﹣3f(x)+1在上的零点;(3)写出函数y=f(x)的单调递增区间(不用写过程).参考答案:考点: 函数单调性的判断与证明;函数零点的判定定理;分段函数的应用.专题: 函数的性质及应用.分析: (1)根据分段函数f(x),f(3)=f(1)=f(﹣1),而f(﹣1)=1﹣|﹣1+1|=1,从而便求出了f(3);(2)先求出该函数在(﹣2,0]上的零点,再根据解析式求出在(0,2]上的零点;(3)根据f(x)解析式可看出:该函数为周期为2的周期函数,所以去绝对值,求出f(x)在(﹣2,0]上的单调递增区间,根据周期求出它在定义域(﹣2,+∞)上的单调增区间即可.解答: (1)由f(x)解析式,f(3)=f(1)=f(﹣1)=1;(2)令2f2(x)﹣3f(x)+1=0;∴(2f(x)﹣1)((f(x)﹣1)=0;∴,或1;∴;∴;又f(1)=f(﹣1),,;∴该函数在上的零点为;(3)由f(x)解析式知该函数周期为2,f(x)=1﹣|x+1|=,n∈N;∴y=f(x)的单调递增区间为(﹣2+2n,﹣1+2n),n∈N.点评: 考查求分段函数函数值的方法,函数零点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音频电平指示 课程设计
- 铜的分类的课程设计
- 重力坝课程设计问题
- 2024陶瓷企业员工培训与福利保障合同
- 2024海洋运输货物保险合同
- 2024燃料油进口采购合同
- 2025年度存款合同违约责任与信用风险控制协议3篇
- 2024项目合同管理
- 2024物业与业主共同推进社区可持续发展合同范本3篇
- 2024版新能源研发与技术转让合同
- 2023年河南省公务员录用考试《行测》真题及答案解析
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 山西省太原市重点中学2025届物理高一第一学期期末统考试题含解析
- 充电桩项目运营方案
- 2024年农民职业农业素质技能考试题库(附含答案)
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 2024年上海市中考语文试题卷(含答案)
评论
0/150
提交评论