高中数学苏教版2第二章推理与证明 章末分层突破_第1页
高中数学苏教版2第二章推理与证明 章末分层突破_第2页
高中数学苏教版2第二章推理与证明 章末分层突破_第3页
高中数学苏教版2第二章推理与证明 章末分层突破_第4页
高中数学苏教版2第二章推理与证明 章末分层突破_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末分层突破[自我校对]①由部分到整体,由个别到一般②类比推理③演绎推理④由一般到特殊⑤综合法⑥执果索因⑦反证法⑧数学归纳法___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________合情推理1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤(2023·温州月考)下面四个图案都是由小正三角形构成的,设第n个图形中有n个正三角形,且所有小正三角形边上黑点的总数为f(n).图2­1(1)求f(2),f(3),f(4),f(5);(2)找出f(n)与f(n+1)的关系,并求出f(n)的表达式.【精彩点拨】(1)根据图案推导计算f(2),f(3),f(4),f(5)及它们之间的关系.(2)利用(1)推导出的关系归纳出f(n)与f(n+1)的关系,然后再求f(n)的表达式.【规范解答】(1)由题意有f(1)=3,f(2)=f(1)+3+3×2=12,f(3)=f(2)+3+3×4=27,f(4)=f(3)+3+3×6=48,f(5)=f(4)+3+3×8=75.(2)由题意及(1)知,f(n+1)=f(n)+3+3×2n=f(n)+6n+3,即f(n+1)-f(n)=6n+3,所以f(2)-f(1)=6×1+3,f(3)-f(2)=6×2+3,f(4)-f(3)=6×3+3,…,f(n)-f(n-1)=6×(n-1)+3,将上面n-1个式子相加,得f(n)-f(1)=6[1+2+3+…+(n-1)]+3(n-1)=6×eq\f(1+n-1n-1,2)+3(n-1)=3n2-3,又f(1)=3,所以f(n)=3n2.[再练一题]1.已知函数y=sin4x+cos4x(x∈R)的值域是eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2),1)),则(1)函数y=sin6x+cos6x(x∈R)的值域是___________________;(2)类比上述结论,函数y=sin2nx+cos2nx(n∈N*)的值域是__________.【解析】(1)y=sin6x+cos6x=(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)=sin4x-sin2xcos2x+cos4x=(sin2x+cos2x)2-3sin2xcos2x=1-eq\f(3,4)sin2(2x)=1-eq\f(3,8)(1-cos4x)=eq\f(5,8)+eq\f(3,8)cos4x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,4),1)).(2)由类比可知,y=sin2nx+cos2nx的值域是[21-n,1].【答案】(1)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,4),1))(2)[21-n,1]综合法与分析法1.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.2.分析法和综合法是两种思路相反的推理方法.分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.设a>0,b>0,a+b=1,求证:eq\f(1,a)+eq\f(1,b)+eq\f(1,ab)≥8.试用综合法和分析法分别证明.【精彩点拨】(1)综合法:根据a+b=1,分别求eq\f(1,a)+eq\f(1,b)与eq\f(1,ab)的最小值.(2)分析法:把eq\f(1,ab)变形为eq\f(a+b,ab)=eq\f(1,a)+eq\f(1,b)求证.【规范解答】法一:(综合法)∵a>0,b>0,a+b=1,∴1=a+b≥2eq\r(ab),eq\r(ab)≤eq\f(1,2),ab≤eq\f(1,4),∴eq\f(1,ab)≥4.又eq\f(1,a)+eq\f(1,b)=(a+b)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))=2+eq\f(b,a)+eq\f(a,b)≥4,∴eq\f(1,a)+eq\f(1,b)+eq\f(1,ab)≥8(当且仅当a=b=eq\f(1,2)时等号成立).法二:(分析法)∵a>0,b>0,a+b=1,要证eq\f(1,a)+eq\f(1,b)+eq\f(1,ab)≥8,只要证eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))+eq\f(a+b,ab)≥8,只要证eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)+\f(1,b)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,b)+\f(1,a)))≥8,即证eq\f(1,a)+eq\f(1,b)≥4.也就是证eq\f(a+b,a)+eq\f(a+b,b)≥4.即证eq\f(b,a)+eq\f(a,b)≥2,由基本不等式可知,当a>0,b>0时,eq\f(b,a)+eq\f(a,b)≥2成立,所以原不等式成立.[再练一题]2.(1)已知a,b,c为互不相等的非负数.求证:a2+b2+c2>eq\r(abc)(eq\r(a)+eq\r(b)+eq\r(c)).(2)用分析法证明:2cos(α-β)-eq\f(sin2α-β,sinα)=eq\f(sinβ,sinα).【证明】(1)因为a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac又因为a,b,c为互不相等的非负数,所以上面三个式子中都不能取“=”,所以a2+b2+c2>ab+bc+ac,因为ab+bc≥2eq\r(ab2c),bc+ac≥2eq\r(abc2),ab+ac≥2eq\r(a2bc),又a,b,c为互不相等的非负数,所以ab+bc+ac>eq\r(abc)(eq\r(a)+eq\r(b)+eq\r(c)),所以a2+b2+c2>eq\r(abc)(eq\r(a)+eq\r(b)+eq\r(c)).(2)要证原等式成立,只需证:2cos(α-β)sinα-sin(2α-β)=sinβ,①因为①左边=2cos(α-β)sinα-sin[(α-β)+α]=2cos(α-β)sinα-sin(α-β)cosα-cos(α-β)sinα=cos(α-β)sinα-sin(α-β)cosα=sinβ=右边,所以①成立,即原等式成立.反证法反证法是间接证明的一种基本方法,用反证法证明时,假定原结论的对立面为真,从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果,断定反设不成立,从而肯定结论.反证法的思路:反设→归谬→结论.设{an}是公比为q的等比数列.(1)推导{an}的前n项和公式;(2)设q≠1,证明:数列{an+1}不是等比数列.【精彩点拨】(1)利用等比数列的概念及通项公式推导前n项和公式;(2)利用反证法证明要证的结论.【规范解答】(1)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1+…+a1=na1;当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,①qSn=a1q+a1q2+…+a1qn,②①-②得,(1-q)Sn=a1-a1qn,∴Sn=eq\f(a11-qn,1-q),∴Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a11-qn,1-q),q≠1.))(2)证明:假设{an+1}是等比数列,则对任意的k∈N*,(ak+1+1)2=(ak+1)(ak+2+1),aeq\o\al(2,k+1)+2ak+1+1=akak+2+ak+ak+2+1,aeq\o\al(2,1)q2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1,∵a1≠0,∴2qk=qk-1+qk+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{an+1}不是等比数列.[再练一题]3.设{an},{bn}是公比不相等的两个等比数列,cn=an+bn.证明:数列{cn}不是等比数列.【证明】假设数列{cn}是等比数列,则(an+bn)2=(an-1+bn-1)(an+1+bn+1).①因为{an},{bn}是公比不相等的两个等比数列,设公比分别为p,q,所以aeq\o\al(2,n)=an-1an+1,beq\o\al(2,n)=bn-1bn+1.代入①并整理,得2anbn=an+1bn-1+an-1bn+1=anbneq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p,q)+\f(q,p))),即2=eq\f(p,q)+eq\f(q,p),②当p,q异号时,eq\f(p,q)+eq\f(q,p)<0,与②相矛盾;当p,q同号时,由于p≠q,所以eq\f(p,q)+eq\f(q,p)>2,与②相矛盾.故数列{cn}不是等比数列.数学归纳法1.关注点一:用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.2.关注点二:由n=k到n=k+1时,除等式两边变化的项外还要利用n=k时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.已知正数数列{an}(n∈N*)中,前n项和为Sn,且2Sn=an+eq\f(1,an),用数学归纳法证明:an=eq\r(n)-eq\r(n-1).【规范解答】(1)当n=1时,a1=S1=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(a1+\f(1,a1))),所以aeq\o\al(2,1)=1(an>0),所以a1=1,又eq\r(1)-eq\r(0)=1,所以n=1时,结论成立.(2)假设n=k(k≥1,k∈N*)时,结论成立,即ak=eq\r(k)-eq\r(k-1).当n=k+1时,ak+1=Sk+1-Sk=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(ak+1+\f(1,ak+1)))-eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(ak+\f(1,ak)))=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(ak+1+\f(1,ak+1)))-eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\r(k)-\r(k-1)+\f(1,\r(k)-\r(k-1))))=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(ak+1+\f(1,ak+1)))-eq\r(k),所以aeq\o\al(2,k+1)+2eq\r(k)ak+1-1=0,解得ak+1=eq\r(k+1)-eq\r(k)(an>0),所以n=k+1时,结论成立.由(1)(2)可知,对n∈N*都有an=eq\r(n)-eq\r(n-1).[再练一题]4.已知f(n)=1+eq\f(1,23)+eq\f(1,33)+eq\f(1,43)+…+eq\f(1,n3),g(n)=eq\f(3,2)-eq\f(1,2n2),n∈N*.(1)当n=1,2,3时,试比较f(n)与g(n)的大小;(2)猜想f(n)与g(n)的大小关系,并给出证明.【解】(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n=2时,f(2)=eq\f(9,8),g(2)=eq\f(11,8),所以f(2)<g(2);当n=3时,f(3)=eq\f(251,216),g(3)=eq\f(312,216),所以f(3)<g(3).(2)由(1)猜想f(n)≤g(n),下面用数学归纳法给出证明:①当n=1,2,3时,不等式显然成立;②假设当n=k(k≥3)时不等式成立,即1+eq\f(1,23)+eq\f(1,33)+eq\f(1,43)+…+eq\f(1,k3)<eq\f(3,2)-eq\f(1,2k2).那么,当n=k+1时,f(k+1)=f(k)+eq\f(1,k+13)<eq\f(3,2)-eq\f(1,2k2)+eq\f(1,k+13).因为eq\f(1,2k+12)-eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2k2)-\f(1,k+13)))=eq\f(k+3,2k+13)-eq\f(1,2k2)=eq\f(-3k-1,2k+13k2)<0,所以f(k+1)<eq\f(3,2)-eq\f(1,2k+12)=g(k+1).由①②可知,对一切n∈N*,都有f(n)≤g(n)成立.转化与化归思想转化与化归是数学思想方法的灵魂.在本章中,合情推理与演绎推理体现的是一般与特殊的转化;数学归纳法体现的是一般与特殊、有限与无限的转化;反证法体现的是对立与统一的转化.设二次函数f(x)=ax2+bx+c(a≠0)中的a,b,c都为整数,已知f(0),f(1)均为奇数,求证:方程f(x)=0无整数根.【精彩点拨】假设方程f(x)=0有整数根k,结合f(0),f(1)均为奇数推出矛盾.【规范解答】假设方程f(x)=0有一个整数根k,则ak2+bk+c=0,∵f(0)=c,f(1)=a+b+c都为奇数,∴a+b必为偶数,ak2+bk为奇数.当k为偶数时,令k=2n(n∈Z),则ak2+bk=4n2a+2nb=2n(2na+b)必为偶数,与ak2+bk当k为奇数时,令k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为一奇数与一偶数乘积,必为偶数,也与ak2+bk为奇数矛盾.综上可知,方程f(x)=0无整数根.[再练一题]5.用数学归纳法证明:当n为正奇数时,xn+yn能被x+y整除.【证明】设n=2m-1,m∈N*,则xn+yn=x2m-1+y2要证明原命题成立,只需证明x2m-1+y2m-1能被x+y整除(m∈N(1)当m=1时,x2m-1+y2m-1=x+y能被x+(2)假设当m=k(k∈N*)时命题成立,即x2k-1+y2k-1能被x+y整除,那么当m=k+1时,x2(k+1)-1+y2(k+1)-1=x2k+2-1+y2k+2-1=x2k-1x2-x2k-1y2+y2k-1y2+x2k-1y2=x2k-1(x2-y2)+y2(x2k-1+y2k-1)=x2k-1(x-y)(x+y)+y2(x2k-1+y2k-1).因为x2k-1(x-y)(x+y)与y2(x2k-1+y2k-1)均能被x+y整除,所以当m=k+1时,命题成立.由(1)(2),知原命题成立.1.观察下列各式:Ceq\o\al(0,1)=40;Ceq\o\al(0,3)+Ceq\o\al(1,3)=41;Ceq\o\al(0,5)+Ceq\o\al(1,5)+Ceq\o\al(2,5)=42;Ceq\o\al(0,7)+Ceq\o\al(1,7)+Ceq\o\al(2,7)+Ceq\o\al(3,7)=43;……照此规律,当n∈N*时,Ceq\o\al(0,2n-1)+Ceq\o\al(1,2n-1)+Ceq\o\al(2,2n-1)+…+Ceq\o\al(n-1,2n-1)=________.【解析】观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有Ceq\o\al(0,2n-1)+Ceq\o\al(1,2n-1)+Ceq\o\al(2,2n-1)+…+Ceq\o\al(n-1,2n-1)=4n-1.【答案】4n-12.一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:eq\b\lc\{\rc\(\a\vs4\al\co1(x4⊕x5⊕x6⊕x7=0,,x2⊕x3⊕x6⊕x7=0,,x1⊕x3⊕x5⊕x7=0,))其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于________.【导学号:01580055】【解析】因为x2⊕x3⊕x6⊕x7=0,所以x2,x3,x6,x7都正确.又因为x4⊕x5⊕x6⊕x7=1,x1⊕x3⊕x5⊕x7=1,故x1和x4都错误,或仅x5错误.因为条件中要求仅在第k位发生码元错误,故只有x5错误.【答案】53.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则____.(填序号)①乙盒中黑球不多于丙盒中黑球②乙盒中红球与丙盒中黑球一样多③乙盒中红球不多于丙盒中红球④乙盒中黑球与丙盒中红球一样多【解析】通过随机事件直接分析出现情况的可能性.取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选(2).【答案】(2)4.设a>0,b>0,且a+b=eq\f(1,a)+eq\f(1,b).证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.【证明】由a+b=eq\f(1,a)+eq\f(1,b)=eq\f(a+b,ab),a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2eq\r(ab)=2,即a+b≥2,当且仅当a=b=1时等号成立.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.5.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)求a+b+c的值;(2)求eq\f(1,4)a2+eq\f(1,9)b2+c2的最小值.【解】(1)因为f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c,当且仅当-a≤x≤b时,等号成立.又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c.又已知f(x)的最小值为4,所以a+b+c=4.(2)由(1)知a+b+c=4,由柯西不等式,得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)a2+\f(1,9)b2+c2))(4+9+1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论