版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市晋江池店中学2021-2022学年高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等比数列{an}中,若a3=2S2+1,a4=2S3+1,则公比q=(
)A.﹣3 B.3 C.﹣1 D.1参考答案:B【考点】等比数列的性质.【专题】计算题;等差数列与等比数列.【分析】由已知条件,求出a4﹣a3=2a3,由此能求出公比.【解答】解:等比数列{an}中,∵a3=2S2+1,a4=2S3+1,∴a4﹣a3=2S3+1﹣(2S2+1)=2(S3﹣S2)=2a3,∴a4=3a3,∴q=3.故选:B.【点评】本题考查等比数列折公比的求法,是中档题,解题时要熟练掌握等比数列的通项公式和前n项和公式.2.设的最小值是(
)A.-2
B.-
C.-3
D.-参考答案:C略3.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是() A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE参考答案:C【考点】平面与平面之间的位置关系.【分析】取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得D正确;由余弦定理可得MB2=MF2+FB2﹣2MF?FB?cos∠MFB,所以MB是定值,M是在以B为圆心,MB为半径的圆上,可得A,B正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得C不正确.【解答】解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正确由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF?FB?cos∠MFB,所以MB是定值,故A正确.∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故B正确,∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴存在某个位置,使DE⊥A1C不正确.故选:C.4.过圆的圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足,则直线AB有(
)A.0条
B.1条
C.
2条
D.3条参考答案:B5.与参数方程,等价的普通方程为(
)A.,,B.,,C.,,D.,,参考答案:C【分析】根据题中参数方程,消去参数,得到普通方程,再由题意求出的范围,即可得出结果.【详解】由消去,可得;又,,所以,所求普通方程为,,.故选C【点睛】本题主要考查参数方程与普通方程的互化,经过计算,消去参数即可,并注意变量的取值范围,属于常考题型.6.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是(
)A. B. C. D.参考答案:B略7.在R上定义运算:xy=x(1-y).若不等式(x-a)(x+a)<1对任意实数x都成立,则()A.-1<a<1
B.0<a<2参考答案:C8.函数在区间上的最大值为(
)A.2 B. C. D.参考答案:D【分析】求出导函数,利用导数确定函数的单调性,从而可确定最大值.【详解】,当时,;时,,∴已知函数在上是增函数,在上是减函数,.故选D.【点睛】本题考查用导数求函数的最值.解题时先求出函数的导函数,由导函数的正负确定函数的增减,从而确定最值,在闭区间的最值有时可能在区间的端点处取得,要注意比较.9.某几何体的三视图如图所示,则该几何体的外接球的体积是(
)A.B.C.D.参考答案:B【分析】直接利用三视图转换为几何体,可知该几何体是由一个正方体切去一个正方体的一角得到的.进一步求出几何体的外接球半径,最后求出球的体积.【详解】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径,则:.故选:B.【点睛】本题考查了三视图和几何体之间的转换,几何体的体积公式的应用,主要考查数学运算能力和转换能力.10.已知不等式组表示的平面区域为D,若函数的图象上存在区域D内的点,则实数m的取值范围是(
)A.[-2,1]
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.观察右边的三角数阵,该数阵第行的所有数字之和为_______.
参考答案:401012.椭圆的焦距是
▲
.参考答案:2分析:由椭圆方程可求,然后由可求,进而可求焦距详解:∵椭圆∴.即答案为2.点睛:本题主要考查了椭圆的性质的简单应用,属基础题
13.已知,且,那么__________.参考答案:-10【分析】函数y=ax5+bx3+sinx为奇函数,从而可以求出f(2)【详解】f(x)+f(-x)=0得函数y=ax5+bx3+sinx为奇函数,∴f(2)=-10.故答案为-10.【点睛】考查奇函数的定义,奇函数满足f(﹣x)+f(x)=0,是基础题
14.已知集合,则集合的真子集共有
个.参考答案:7试题分析:集合含有3个元素,则子集个数为,真子集有7个考点:集合的子集15.已知定点A为(2,0),圆上有一个动点Q,若线段AQ的中点为点P,则动点P的轨迹是
参考答案:以为圆心,半径长为的圆16.已知F1,F2是椭圆的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为
参考答案:617.复数的实部为_______.参考答案:1试题分析:复数i(1﹣i)=1﹣i,复数的实部为:1.故答案为:1.考点:复数代数形式的乘除运算.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,(1)求恰好有一件次品的概率.(2)求都是正品的概率.(3)求抽到次品的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)把随机抽出两件产品恰好有一件次品这一事件列举出来,看方法数有多少,再列举总的方法数,两者相除即可.(2)用列举法计算都是正品的情况,再除以总的方法数.(3)用互斥事件的概率来求,先计算都是正品的概率,再让1减去都是正品的概率即可.【解答】解:将六件产品编号,ABCD(正品),ef(次品),从6件产品中选2件,其包含的基本事件为:(AB)(AC)(AD)(Ae)(Af)(BC)(BD)(Be)(Bf)(CD)(Ce)(Cf)(De)(Df)(ef).共有15种,(1)设恰好有一件次品为事件A,事件A中基本事件数为:8则P(A)=(2)设都是正品为事件B,事件B中基本事件数为:6则P(B)=(2)设抽到次品为事件C,事件C与事件B是对立事件,则P(C)=1﹣P(B)=1﹣19.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等等码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间是2小时,求它们中的任何一条船不需要等待码头空出的概率.参考答案:解:(1)设甲、乙两船到达时间分别为x、y,则O≤x<24,0≤y<24且y-x>4或y-x<-4作出区域
设“两船无需等待码头空出”为事件A,则P(A)=
(2)当甲船的停泊时间为4小时,两船不需等待码头空出,则满足x-y>2.设在上述条件时“两船不需等待码头空出”为事件B,画出区域.
P(B)=略20.设λ∈R,f(x)=,其中,已知f(x)满足(1)求函数f(x)的单调递增区间;(2)求不等式的解集.参考答案:考点:两角和与差的正弦函数;平面向量数量积的运算;正弦函数的对称性;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)利用向量的数量积以及两角和的正弦函数,化简函数的解析式,利用正弦函数的单调性求解即可.(2)直接利用余弦函数的图象与性质,写出不等式的解集即可.解答: 解:(1)f(x)=,其中,=λsinxcosx﹣cos2x+sin2x=…∵,∴…∴令,得,∴f(x)的单调递增区间是…(2)∵,∴∴∴不等式的解集是…点评:本题考查向量的数量积以及两角和与差的三角函数,三角函数的单调性的应用,考查计算能力.21.已知变量,满足约束条件则目标函数()的最大值为16,则的最小值为(
)A.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《小学人物描写》课件
- 《网络b安全b》课件
- 第3单元 中国特色社会主义道路(A卷·知识通关练)(解析版)
- 《美甲的发展史》课件
- 2014年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 中国非遗文化鱼灯介绍2
- 《纹样与生活》课件
- 羽绒服的成本控制与优化设计-洞察分析
- 雨水收集设施维护与监测-洞察分析
- 体育游戏在体育教育中的应用-洞察分析
- 2024成都中考数学第一轮专题复习之专题四 几何动态探究题 教学课件
- 2024合同范本之太平洋保险合同条款
- 万用表的使用
- TDT1062-2021《社区生活圈规划技术指南》
- GB/T 12959-2024水泥水化热测定方法
- 《商务礼仪》试题及答案大全
- 《核电厂焊接材料评定与验收标准》
- MOOC 数字逻辑电路实验-东南大学 中国大学慕课答案
- 小学生建筑科普小知识
- 安徽省六安市2024届高三上学期期末教学质量检测数学试题(解析版)
- 2024年1月电大国家开放大学期末考试试题及答案:人类行为与社会环境
评论
0/150
提交评论