湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析_第1页
湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析_第2页
湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析_第3页
湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析_第4页
湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省郴州市月峰中心学校2021-2022学年高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过抛物线的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点。则△ABO是一个

(

)A、等边三角形;

B、直角三角形;

C、不等边锐角三角形;

D、钝角三角形参考答案:D略2.若复数是纯虚数,则实数的值为(

).

.

.或

.参考答案:B3.设是等比数列的前项和,若,则(

)A.

B.

C.

D.或参考答案:B试题分析:,,选B.考点:等比数列公比4.已知集合M={0,1,2,3},N={x|<2x<4},则集合M∩(CRN)等于()A.{0,1,2} B.{2,3} C. D.{0,1,2,3}参考答案:B5.

函数,的图象可能是下列图象中的(

)参考答案:C6.已知曲线在点(1,1)处的切线与直线垂直,则a的值是(

)A.-1

B.1

C. D.参考答案:C7.若集合,则()A.

B.

C.

D.参考答案:B8.函数的反函数是

(A)(B)

(C)(D)参考答案:答案:A解析:对于x>1,函数>0,解得,=,∴原函数的反函数是,选A.9.在的展开式中,含项的系数为(

)A.

B.

C.

D.2参考答案:C试题分析:因,故令可得,所以含的项的系数是,应选C.考点:二项式定理等有关知识的综合运用.10.执行如图所示的程序,若输出的结果是4,则判断框内实数的值可以是(A)1

(B)2

(C)3

(D)4参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.设R,向量,,且,,则.参考答案:由,由,故.12.校团委组织“中国梦,我的梦”知识演讲比赛活动,现有4名选手参加决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有

种.参考答案:14413.在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为.参考答案:(﹣1,﹣)【考点】等差数列的性质.【分析】根据题意当且仅当n=8时Sn取得最大值,得到S7<S8,S9<S8,联立得不等式方程组,求解得d的取值范围.【解答】解:∵Sn=7n+,当且仅当n=8时Sn取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).14.已知两个单位向量的夹角为,,则m=______.参考答案:【分析】直接把代入化简即得m的值.【详解】,所以,故答案为.【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,,A+B=2C,则sinB=____参考答案:116.设双曲线的右顶点为,右焦点为.过点且与双曲线的一条渐近线平行的直线与另一条渐近线交于点,则的面积为.参考答案:17.sin(-)cos-cos(-)sin=,在第三象限,则cos=_____________。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.参考答案:解:(1)六个函数中是奇函数的有,,,由这3个奇函数中的任意两个函数相加均可得一个新的奇函数.记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知

(2)可取1,2,3,4

,

,

故的分布列为1234

答:的数学期望为

略19.(本小题满分12分)已知向量(为实数).(I)时,若,求;(II)若,求的最小值,并求出此时向量在方向上的投影.参考答案:(I),,,(4分)

得;(5分)(II)时,, (8分)当时,, (10分)此时,在方向上的投影. (12分)20.(本小题满分14分)已知函数在(0,1)内是增函数.(1)求实数的取值范围;(2)若,求证:.参考答案:解:(1)由已知得内恒成立,即内恒成立,(2)

,又由(1)得当时,内为增函数,则,,即,.21.(本小题满分12分)设,

.(Ⅰ)当时,求曲线在处的切线的方程;(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;(Ⅲ)如果对任意的,都有成立,求实数的取值范围.参考答案:【知识点】导数的应用B12【答案解析】(1)(Ⅱ)4(Ⅲ)a≥1(1)当时,,,,,所以曲线在处的切线方程为;

(2)存在,使得成立

等价于,考察,,

递减极小值递增

由上表可知,,所以满足条件的最大整数;(3)当时,恒成立等价于恒成立,记h(x)=x-x2lnx,h'(x)=1-2xlnx-x,h'(1)=0.

记m(x)=1-2xlnx-x,m'(x)=-3-2lnx,

由于x∈[,2],m'(x)=-3-2lnx<0,

所以m(x)=h'(x)=1-2xlnx-x在[,2]上递减,当x∈[,1)时,h'(x)>0,x∈(1,2]时,h'(x)<0,即函数h(x)=x-x2lnx在区间[,1)上递增,在区间(1,2]上递减,所以h(x)max=h(1)=1,所以a≥1.【思路点拨】(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,最后用直线的斜截式表示即可;

(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]max≥M,先求导数,研究函数的极值点,通过比较与端点的大小从而确定出最大值和最小值,从而求出[g(x1)-g(x2)]max,求出M的范围;

(3)当x∈[,2]时,f(x)=+xlnx≥1恒成立等价于a≥x-x2lnx恒成立,令h(x)=x-x2lnx,利用导数研究h(x)的最大值即可求出参数a的范围.22.(本小题满分13分)

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.

(Ⅰ)求的值;

(Ⅱ)若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论