湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析_第1页
湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析_第2页
湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析_第3页
湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析_第4页
湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市推山中学2021-2022学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,) B.[0,)∪[,π) C.[,π) D.[0,)∪(,]参考答案:B【考点】导数的几何意义;直线的倾斜角.【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.【解答】解:∵函数的导数y′=3x2﹣6x+3﹣=3(x﹣1)2﹣≥﹣,∴tanα≥﹣,又0≤α<π,∴0≤α<

≤α<π,故选B.2.已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为A.或5

B.

或5

C.

D.参考答案:C3.已知

A.

B.

C.

D.

参考答案:D4.圆和圆的位置关系为(

).A.相离

B.相交

C.外切

D.内含参考答案:B略5.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1] B.[,] C.[,1) D.[,]参考答案:B【考点】椭圆的简单性质.【分析】设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即离心率e,进而根据α的范围确定e的范围.【解答】解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a

…①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα

…②|BF|=2ccosα

…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故选B6.下列命题中的假命题是()A. B.C. D.参考答案:C试题分析:对于A.,当x=1成立。对于B.,当x=成立,对于C.,当x<0不成立故为假命题对于D.,成立,故选C.考点:全称命题和特称命题点评:主要考查了判定命题真假的的运用,属于基础题。7.已知点F为双曲线的右焦点,点P是双曲线右支上的一点,O为坐标原点,若,则双曲线C的离心率为(

)A. B. C. D.2参考答案:C【分析】记双曲线左焦点为,由,求出,根据双曲线的定义,即可得出结果.【详解】记双曲线左焦点为因为,又,,所以在中,由余弦定理可得,所以,因为点是双曲线右支上的一点,由双曲线的定义可得,所以,双曲线C的离心率为.故选C8.已知0<a<b<c<1,且a、b、c成等比数列,n为大于1的整数,那么()A.成等比数列 B.成等差数列C.倒数成等差数列 D.以上均不对参考答案:C略9.设{an}是等比数列,则“a1<a2<a3”是数列{an}是递增数列的A.充分而不必要条件 B.必要而不充分条件、C.充分必要条件 D.既不充分也不必要条件参考答案:C【详解】或,所以数列{an}是递增数列若数列{an}是递增数列,则“a1<a2<a3”,因此“a1<a2<a3”是数列{an}是递增数列的充分必要条件,选C10.当a,b均为有理数时,称点P(a,b)为有理点,又设A(,0),B(0,),则直线AB上有理点的个数是(

)(A)0

(B)1

(C)2

(D)无穷多个参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知实数x,y满足,则的最大值是__________.参考答案:13【分析】根据约束条件得到可行域,根据的几何意义可知当过时,取最大值,代入求得结果.【详解】实数满足的可行域,如图所示:其中目标函数的几何意义是可行域内的点到坐标原点距离的平方由图形可知仅在点取得最大值

本题正确结果:13【点睛】本题考查线性规划求解最值的问题,关键是明确平方和型目标函数的几何意义,利用几何意义求得最值.12.设,则=

.参考答案:13.根据如图所示的伪代码,可知输出的结果M为

参考答案:2314.已知向量a=(8,),b=(x,1),其中x>0,若(a-2b)∥(2a+b),则x=

.参考答案:4【分析】根据平面向量的坐标运算公式求出向量与,然后根据平面向量共线(平行)的充要条件建立等式,解之即可.【详解】向量,,,,即,又,故答案为4.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.

15.设数列的前项和为(),关于数列有下列三个命题:①若,则既是等差数列又是等比数列;②若,则是等差数列;③若,则是等比数列。这些命题中,真命题的序号是

参考答案:②③16.

在中,,则内角A的取值范围是

.参考答案:17.已知数对满足,则的最大值是___________.参考答案:6_略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设计算法求的值。要求画出程序框图,写出用基本语句编写的程序。参考答案:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法。程序框图如图所示:程序如下:19.如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.参考答案:【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(1)(i)先由C1B1∥A1D1证明C1B1∥平面ADD1A1,再由线面平行的性质定理得出C1B1∥EF,证出EF∥A1D1.(ii)易通过证明B1C1⊥平面ABB1A1得出B1C1⊥BA1,再由tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,得出BA1⊥B1F.所以BA1⊥平面B1C1EF;(2)设BA1与B1F交点为H,连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在RT△BHC1中求解即可.【解答】(1)证明(i)∵C1B1∥A1D1,C1B1?平面ADD1A1,∴C1B1∥平面ADD1A1,又C1B1?平面B1C1EF,平面B1C1EF∩平面ADD1A1=EF,∴C1B1∥EF,∴EF∥A1D1;(ii)∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1,又∵B1C1⊥B1A1,∴B1C1⊥平面ABB1A1,∴B1C1⊥BA1,在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,故BA1⊥B1F.所以BA1⊥平面B1C1EF;(2)解:设BA1与B1F交点为H,连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形AA1B1B中,AB=,AA1=2,得BH=,在RT△BHC1中,BC1=2,sin∠BC1H==,所以BC1与平面B1C1EF所成的角的正弦值是.【点评】本题考查空间直线、平面位置故选的判定,线面角求解.考查空间想象能力、推理论证能力、转化、计算能力.20.如图所示,已知正方体ABCD-A′B′C′D′,求:(1)BC′与CD′所成的角;(2)AD与BC′所成的角.参考答案:解:(1)连接BA′,则BA′∥CD′,则∠A′BC′就是BC′与CD′所成的角.连接A′C′,由△A′BC′为正三角形,知∠A′BC′=60°.即BC′与CD′所成的角为60°.(2)由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.略

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论