河南省洛阳市轴第二中学2022高三数学理联考试卷含解析_第1页
河南省洛阳市轴第二中学2022高三数学理联考试卷含解析_第2页
河南省洛阳市轴第二中学2022高三数学理联考试卷含解析_第3页
河南省洛阳市轴第二中学2022高三数学理联考试卷含解析_第4页
河南省洛阳市轴第二中学2022高三数学理联考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳市轴第二中学2022高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设a,b,c分别是△ABC的内角A,B,C的对边,已知,则∠A的大小为(

)A.30°

B.60° C.120° D.150°参考答案:C∵,,∴由正弦定理可得:,整理可得:b2+c2﹣a2=-bc,∴由余弦定理可得:cosA=,∴由A∈(0,π),可得:A=.故选C.

2.在三棱锥A-BCD中,,二面角A-BC-D的余弦值为,当三棱锥A-BCD的体积的最大值为时,其外接球的表面积为(

)A.5π B.6π C.7π D.8π参考答案:B【分析】根据两个射影,结合球的图形,可知二面角的平面角为;根据题意可知当,时,三棱锥的体积最大。根据体积的最大值可求得BC的长,结合图形即可求得球的半径,进而求得表面积。【详解】如图,设球心在平面内的射影为,在平面内的射影为则二面角的平面角为点在截面圆上运动,点在截面圆上运动,由图知,当,时,三棱锥的体积最大,此时与是等边三角形设,则,解得,所以,,设则解得∴球的半径所求外接球的表面积为故选B.【点睛】本题考查了三棱锥外接球的综合应用,根据空间几何关系求得球的半径,进而求得表面积,对空间想象能力要求较高,属于难题。3.设ω>0,函数的图象向左平移个单位后与原图象重合,则ω的最小值是()A. B. C. D.3参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据图象向左平移个单位后与原图象重合,得到是一个周期,写出周期的表示式,解出不等式,得到ω的最小值.【解答】解:∵图象向左平移个单位后与原图象重合∴是一个周期∴ω≥3所以最小是3故选D.4.=()A.4

B.2

C.-2

D.-4参考答案:A略5..函数f(x)=—cosx在[0,+∞)内

A.没有零点

B.有且仅有一个零点

C.有且仅有两个零点

D.有无穷多个零点参考答案:B本题考查了函数的零点以及利用数形结合处理问题的能力,难度中等。

由得,画出和的图象,则两个函数的图象有一个交点,因此函数有且仅有一个零点,故选B。6.已知集合,集合(为自然对数的底数),则(

)A.

B.

C.

D.参考答案:C

考点:1、集合的表示;2、集合的交集.7.已知命题命题,则(

)A.命题p∨q是假命题

B.命题p∧q是真命题

C.命题p∧(q)是真命题

D.命题p∨(q)是假命题参考答案:C8.若,且,则的值为(

)A. B. C. D.参考答案:D∵,∴,且∴∴∵∴∴故选D

9.已知直线l1,l2与平面α,则下列结论中正确的是 A.若l1α,l2∩α=A,则l1,l2为异面直线B.若l1∥l2,l1∥α,则l2∥αC.若l1⊥l2,l1⊥α,则l2∥αD.若l1⊥α,l2⊥α,则l1∥l2参考答案:D10.已知直线的倾斜角为,则的值为、

、参考答案:由已知有,故,故选.二、填空题:本大题共7小题,每小题4分,共28分11.在正三棱锥-中,为中点,且与所成角为,则与底面所成角的正弦值为

.参考答案:12.设x,y∈R,向量,,,且,,则=.参考答案:15【考点】平面向量的坐标运算.【分析】利用向量垂直与数量积的关系、向量共线定理、向量坐标运算性质即可得出.【解答】解:∵,,∴=3x﹣6=0,3y+6=0,解得x=2,y=﹣2,∴=(2,1),=(1,﹣2).则=9+6=15.故答案为:15.【点评】本题考查了向量垂直与数量积的关系、向量共线定理、向量坐标运算性质,考查了推理能力与计算能力,属于基础题.13.若函数为奇函数,则

参考答案:14.______________.参考答案:试题分析:原式,故答案为.考点:(1)降幂公式;(2)两角和与差的余弦公式.15.的展开式中,的系数是__________.(用数字填写答案)参考答案:通项公式,令,解得,∴系数为.16.设A、B为在双曲线上两点,O为坐标原点.若OA丄OB,则ΔAOB面积的最小值为______参考答案:略17.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为

;参考答案:9三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数,.(1)讨论的单调性;(2)当时,记的最小值为,证明:.参考答案:(1)的定义域为,,当时,,在上单调递增;当时,当,,单调递减;当,,单调递增;综上,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)知,,即.解法一:,,∴单调递减,又,,所以存在,使得,∴当时,,单调递增;当时,,单调递减;∴,又,即,,∴,令,则在上单调递增,又,所以,∴.解法二:要证,即证,即证:,令,则只需证,,当时,,单调递减;当时,,单调递增;所以,所以,即.19.(1)已知函数的定义域为,求实数的取值范围;(2)若正实数满足,求的取值范围.参考答案:(1)由题意知恒成立.因为,所以,解得或.

(2)因为(,所以,即的取值范围为.

20.(本题满分15分)已知,且(为自然对数的底数)。(1)求与的关系;(2)若在其定义域内为增函数,求的取值范围;(3)证明:(提示:需要时可利用恒等式:)参考答案:解:(1)由题意

(2)由(1)知:(x>0)令h(x)=x2-2x+.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.即x2-2x+≥0上恒成立又所以

(3)证明:证:lnx-x+1≤0

(x>0),设.当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,∴lnx≤x-1.②由①知lnx≤x-1,又x>0,略21.甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(Ⅰ)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况.(Ⅱ)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.参考答案:解:(1)甲乙二人抽到的牌的所有情况(方片4用4’表示)为:(2,3)、(2,4)、(2,4’)、(3,2)、(3,4)、(3,4’)、(4,2)、(4,3)、(4,4’)、(4’,2)、(4’,3)(4’,4),共12种不同情况(2)甲抽到3,乙抽到的牌只能是2,4,4.因此乙抽到的牌的数字大于3的概率为;(3)由甲抽到牌比乙大有(3,2)、(4,2)、(4,3)、(4’,2)、(4’,3)5种,甲胜的概率,乙获

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论