版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封市第三十六中学2022年高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在中,已知,则(
)A.-45
B.13
C.-13
D.-37参考答案:D?==∵=,∴=(﹣)=﹣+整理可得:∴=4∴=﹣12∴?===﹣12﹣25=﹣37.故选:D.
2.某单位为了了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1用电量/千瓦时24343864由表中数据可得回归直线方程,其中。预测当气温为-4℃时,用电量的千瓦时数约为(
)A.72
B.70
C.68
D.66参考答案:C由题意得,∴样本中心为(10,40).∵回归直线过样本中心(10,40),∴,∴,∴回归直线方程为.当时,,即当气温为-4℃时,用电量的千瓦时数约为68.故选C.
3.已知和点直线通过点A且平行于,则直线的方程是
(
)A.
B.
C.
D.参考答案:A略4.设两条直线的方程分别为x+y+a=0和x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线间距离的最大值为()A. B. C. D.参考答案:B【考点】点到直线的距离公式.【分析】利用方程的根,求出a,b,c的关系,求出平行线之间的距离表达式,然后求解距离的最值.【解答】解:因为a,b是方程x2+x+c=0的两个实根,所以a+b=﹣1,ab=c,两条直线之间的距离d=,所以d2==,因为0≤c≤,所以≤1﹣4c≤1,即d2∈[,],所以两条直线之间的距离的最大值是.故选:B.5.INPUTab=a¥10-a/10+aMOD10PRINTbEND若a=35,则以上程序运行的结果是(
)A.4.5
B.3
C.1.5
D.2参考答案:A当时,。6.
lg8+3lg5的值为(
)A.-3
B.-1
C.1
D.3参考答案:D略7..410°角的终边落在(
)A.第一象限 B.第二象限C.第三象限 D.第四象限参考答案:A【分析】根据角的定义判断即可【详解】,故为第一象限角,故选A。8.“b是与的等差中项”是“b是与的等比中项”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:A9.下列关于向量的叙述,正确的个数是(
)①向量的两个要素是大小与方向;②长度相等的向量是相等向量;③方向相同的向量是共线向量。A.3
B.2
C.1
D.0参考答案:C10.设等差数列满足,则m的值为
(
)A.
B.
C.
D.26参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在正三棱锥S-ABC中,外接球的表面积为,M,N分别是SC,BC的中点,且,则此三棱锥侧棱SA=
.
参考答案:略12.已知(),则使得关于方程在内恒有两个不相等实数解的实数的取值范围为:
参考答案:13.函数恒过定点__________.参考答案:,∵,∴恒过点.14.设f(x)=sinxcosx+cos2x,则f(x)的单调递减区间是
.参考答案:[kπ+,kπ+],(k∈Z)
【考点】三角函数中的恒等变换应用.【分析】推导出f(x)=sin(2x+)+,由此能求出f(x)的单调递减区间.【解答】解:∵f(x)=sinxcosx+cos2x==sin(2x+)+,∴f(x)的单调递减区间满足:,k∈Z,∴,k∈Z.∴f(x)的单调递减区间是[kπ+,kπ+],(k∈Z).故答案为:[kπ+,kπ+],(k∈Z).15.已知平面向量=(2,1),=(m,2),且∥,则3+2=.参考答案:(14,7)【考点】9K:平面向量共线(平行)的坐标表示.【分析】根据平面向量平行的坐标表示,求出m的值,再计算3+2即可.【解答】解:∵向量=(2,1),=(m,2),且∥,∴1?m﹣2×2=0,解得m=4,∴=(4,2);∴3+2=(6,3)+(8,4)=(14,7).故答案为:(14,7).16.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为
.参考答案:33.75由图可知,的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为x,则解得故该组数据的中位数为
17.已知函数,则
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设向量,,(1)若,求x的值;(2)设函数,求f(x)的最大值.参考答案:(1);(2).【分析】(1)直接化简得到,解方程即得x的值.(2)先求出f(x)=,再利用不等式的性质和三角函数的图像性质求出函数的最大值.【详解】(1)由得,又因为所以.又所以(2)函数因为所以,故,,即的最大值为【点睛】(1)本题主要考查三角恒等变换和三角函数的图像和性质,考查向量的模的计算,意在考察学生对这些知识的掌握水平和分析推理能力.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.19.设是实数,函数(1)试证明:对于任意的实数,函数在上位增函数;(2)试确定的值,使函数为奇函数。参考答案:(1)证明略;(2)略解如下:
略20.数列{满足:
证明:(1)对任意为正整数;(2)对任意为完全平方数.参考答案:证明:(1)由题设得且{严格单调递增,将条件式变形得,
两边平方整理得
①
②
①-②得
③
由③式及可知,对任意为正整数.……10分(2)将①两边配方,得。
④
记从而④式成立.
是完全平方数.……20分21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点.(Ⅰ)求证:AB⊥平面PAC;(Ⅱ)求证:AQ∥平面PCD.参考答案:【考点】直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(Ⅰ)根据线面垂直的性质及PA⊥平面ABCD推断出PA⊥AC,PA⊥AB,进而利用PB⊥AC,推断出AC⊥平面PAB,利用线面垂直性质可知AC⊥AB,再根据PA⊥AB,PA,AC?平面PAC,PA∩AC=A推断出AB⊥平面PAC.(Ⅱ)取PC中点E,连结QE,ED,推断出QE为中位线,判读出QE∥BC,BC=2AD,进而可知QE∥AD,QE=AD,判断出四边形AQED是平行四边形,进而可推断出AQ∥DE,最后根据线面平行的判定定理证明出AQ∥平面PCD.【解答】证明:(Ⅰ)∵PA⊥平面ABCD,AC,AB?平面ABCD,∴PA⊥AC,PA⊥AB,∵PB⊥AC,AP⊥AC,PA,PB?平面PAB,PA∩PB=P,∴AC⊥平面PAB,∵AB?平面PAB,∴AC⊥AB,PA⊥AB,PA,AC?平面PAC,PA∩AC=A;∴AB⊥平面PAC.(Ⅱ)取PC中点E,连结QE,ED,∵Q是线段PB的中点,E是PC的中点,∴QE∥BC,BC=2AD,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能安防系统设备维修与升级合同3篇
- 二零二五年度乡村旅游开发农村房屋买卖合同协议书2篇
- 2025年度企业公务车借用与车辆保险理赔协议范本3篇
- 二零二五年度农机维修配件进出口贸易合同模板3篇
- 二零二五年度农村宅基地房屋买卖及农村社会保障体系建设合同
- 2025年度农村农业劳务用工合同范本(含劳动争议调解)
- 二零二五年度新能源实验室储能技术研究合同3篇
- 二零二五年度汽车维修兼职技师雇佣合同3篇
- 2025年度XX能源公司二零二五年度绿色贷款合同3篇
- 2025年度商业综合体写字楼租赁管理服务协议3篇
- 护理查房深静脉置管
- 计算与人工智能概论知到智慧树章节测试课后答案2024年秋湖南大学
- 2024年度油漆涂料生产线租赁合同3篇
- 2024-2024年上海市高考英语试题及答案
- 庆祝澳门回归25周年主题班会 课件 (共22张)
- 《药事管理与法规》期末考试复习题及答案
- 血液病染色体
- 幼儿园膳食管理委员会组织结构概述
- 介入治疗的临床应用
- 第四章 牛顿运动定律 章末检测题(基础卷)(含答案)2024-2025学年高一上学期物理人教版(2019)必修第一册
- 华中师范大学《高等代数与解析几何》2023-2024学年第一学期期末试卷
评论
0/150
提交评论