版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年度江苏省扬州市瓜洲中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:x﹣1045f(x)1221(1)函数y=f(x)是周期函数;(2)函数f(x)在(0,2)上是减函数;(3)如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;(4)当1<a<2时,函数y=f(x)﹣a有4个零点.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个参考答案:A【考点】根的存在性及根的个数判断.【分析】先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象和导函数的图象,对四个命题,一一进行验证,对于假命题采用举反例的方法进行排除即可得到答案.【解答】解:函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示:由导函数的图象和原函数的关系得,原函数的大致图象如图:由图得:∵函数的定义域为闭区间,而周期函数的定义域一定是无界的,故①为假命题;②为真命题.因为在[0,2]上导函数为负,故原函数递减;由已知中y=f′(x)的图象,及表中数据可得当x=0或x=4时,函数取最大值2,若x∈[﹣1,t]时,f(x)的最大值是2,那么0≤t≤5,故t的最大值为5,即③错误;∵函数f(x)在定义域为[﹣1,5]共有两个单调增区间,两个单调减区间,故函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个,即④错误,故选:A.2.对于平面α和不重合的两条直线m、n,下列选项中正确的是()A.如果m?α,n∥α,m、n共面,那么m∥nB.如果m?α,n与α相交,那么m、n是异面直线C.如果m?α,n?α,m、n是异面直线,那么n∥αD.如果m⊥α,n⊥m,那么n∥α参考答案:A【考点】LP:空间中直线与平面之间的位置关系;2K:命题的真假判断与应用.【分析】本题考查的知识点是空间中直线与平面之间的位置关系,如果m?α,n∥α,则m∥n或m与n异面,又由m、n共面,那么m∥n;如果m?α,n与α相交,那么m、n相交或m、n是异面直线;如果m?α,n?α,当m、n是异面直线时,则n与α可能平行,也可能相交;如果m⊥α,n⊥m,那么n∥α或n?α.分析后即可得到正确的答案.【解答】解:A答案中:如果m?α,n∥α,则m∥n或m与n异面,又由m、n共面,那么m∥n,故A正确;B答案中:如果m?α,n与α相交,那么m、n相交或m、n是异面直线,故B答案错误;C答案中:如果m?α,n?α,当m、n是异面直线时,则n与α可能平行,也可能相交,故C答案错误;D答案中:如果m⊥α,n⊥m,那么n∥α或n?α故D答案错误;故选A【点评】要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.3.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A.50 B.80 C.120 D.140参考答案:B分2种情况讨论,①、甲组有2人,首先选2个放到甲组,再把剩下的3个人放到乙和丙两个位置,每组至少一人,②、甲组含有3个人时,选出三个人,剩下的两个人在两个位置排列,由分类计数原理计算可得答案.解:根据题意,分2种情况讨论:①、甲组有2人,首先选2个放到甲组,共有C52=10种结果,再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C32A22=6种结果,∴根据分步计数原理知共有10×6=60,②、当甲中有三个人时,有C53A22=20种结果∴共有60+20=80种结果;故选:B.4.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==i在复平面内对应的点位于第四象限.故选:D.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.5.已知O是平面上的一个定点,A,B,C,是平面上不共线三个点,动点P满足:,则动点P的轨迹一定通过△ABC的(
) A、内心 B、垂心 C、外心 D、重心参考答案:D6.函数的部分图象如图所示,则+++的值为(
)A.0
B.3
C.6
D.-参考答案:A
【知识点】三角函数的图像与性质解析:由函数图象可得:A=2,T=2(6﹣2)=8=,故解得:ω=,可得函数解析式为:f(x)=2sinx,所以,有:f(1)=f(2)=2f(3)=f(4)=0f(5)=﹣f(6)=﹣2f(7)=﹣f(8)=0f(9)=…观察规律可知函数f(x)的值以8为周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=0,由于2015=251*8+7,故可得:f(1)+f(2)+f(3)+…+f(2015)=f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=0.【思路点拨】由已知中的函数的图象,我们易求出函数的解析式,进而分析出函数的性质,根据函数是一个周期函数,我们可以将f(1)+f(2)+…+f(2006)转化为一个数列求和问题,然后利用分组求和法,即可得到答案.7.如图是一个简单几何体的三视图,则该几何体的体积为()A. B. C. D.1参考答案:A【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=1.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=1.∴该几何体的体积==.故选:A.8.设是奇函数,则的解集为
A.(-1,0)
B.(0,1)
C.(-,0)
D.(-,0)∪(1,+)参考答案:A略9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【分析】根据以及充分不必要条件的定义可得.【详解】因为,所以?所以”是“”的充分不必要条件.故选A.【点睛】本题考查了对数不等式以及充分必要条件,属基础题.10.若,,则(
)
参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知数列{an}的首项为3,等比数列{bn}满足,且,则的值为
.参考答案:3
12..若存在实数和,使得函数和对定义域内的任意均满足:,且存在使得,存在使得,则称直线为函数和的“分界线”.在下列说法中正确的是__________(写出所有正确命题的编号).①任意两个一次函数最多存在一条“分界线”;②“分界线”存在的两个函数的图象最多只有两个交点;③与的“分界线”是;④与的“分界线”是或.参考答案:③①项,任意两个一次函数相交时,过交点的直线有无数条,故任意两个一次函数存在无数条分界线,故①错误;②项,当,时,满足是和的分界线,此时与有个交点,故②错误;③项,由得,解得:或,此时,,,过的直线为,则与的“分界线”是,故③正确;④项,作出,和和的图象,由图象知与和没有交点,不满足条件和,故④错误.13.已知函数,若互不相等,且,则的取值范围是(
)A.
B.
C.
D.
参考答案:C14.为了解一片防风林的生长情况,随机测量了其中100株树木的底部周长(单位:cm)、根据所得数据画出样品的频率分布直方图(如图),那么在这100株树木中,底部周长大于100cm的株数是__________..参考答案:【知识点】用样本估计总体I2【答案解析】7000
由图可知:底部周长小于100cm段的频率为(0.01+0.02)×10=0.3,
则底部周长大于100cm的段的频率为1-0.3=0.7
那么在这片树木中底部周长大于100cm的株树大约10000×0.7=7000人.
故答案为7000.【思路点拨】在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的面积等于这一组的频率.底部周长小于100cm的矩形的面积求和乘以样本容量即可.15.下面给出四种说法:①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;②命题P:“?x0∈R,x02﹣x0﹣1>0”的否定是¬P:“?x∈R,x2﹣x﹣1≤0”;③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)=﹣p④回归直线一定过样本点的中心(,).其中正确的说法有
(请将你认为正确的说法的序号全部填写在横线上)参考答案:②③④【考点】BS:相关系数.【分析】①用相关指数R2来刻画回归效果时,R2越大,模型的拟合效果越好;②根据特称命题的否定的全称命题,写出P的否定¬P即可;③根据正态分布N(0,1)的性质,由P(X>1)=p求出P(﹣1<X<0)的值;④回归直线一定过样本点的中心(,).【解答】解:对于①,用相关指数R2来刻画回归效果时,R2越大,说明模型的拟合效果越好,∴①错误;对于②,命题P:“?x0∈R,x02﹣x0﹣1>0”的否定是¬P:“?x∈R,x2﹣x﹣1≤0”,②正确;对于③,根据正态分布N(0,1)的性质可得,若P(X>1)=p,则P(X<﹣1)=p,∴P(﹣1<X<1)=1﹣2p,∴P(﹣1<X<0)=﹣p,③正确;对于④,回归直线一定过样本点的中心(,),正确;综上,正确的说法是②③④.故答案为:②③④.16.已知、分别是椭圆的左、右焦点,点在椭圆上,的平分线交轴于点,则
.参考答案:217.(坐标系与参数方程选做题)在直角坐标系中,直线的参数方程为(为参数).以原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,则直线和曲线的公共点有_______个.参考答案:【知识点】点的极坐标和直角坐标的互化;参数方程化成普通方程.N3
【答案解析】
解析:直线的普通方程为,圆的普通方程为,圆心到直线的距离为,所以直线和曲线相切,公共点只有个.故答案为1.【思路点拨】把参数方程极坐标方程分别化成普通方程,再利用点到直线的距离公式得出圆心到直线的距离与半径的关系即可得出。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数.(Ⅰ)若,求函数的单调区间;(Ⅱ)若函数在区间上是减函数,求实数的取值范围;(Ⅲ)过坐标原点作曲线的切线,证明:切点的横坐标为.参考答案:解:(Ⅰ)时,,,
……………1分,的减区间为,增区间.
……………3分(Ⅱ)在区间上是减函数,对任意恒成立,即对任意恒成立,
……………5分对任意恒成立,令,,
……………7分易知在单调递减,..
……………8分(Ⅲ)设切点为,,切线的斜率,又切线过原点,,存在性:满足方程,所以,是方程的根.
……………11分再证唯一性:设,,在单调递增,且,所以方程有唯一解.综上,切点的横坐标为.
……………13分
略19.已知△PDQ中,A,B分别为边PQ上的两个三等分点,BD为底边PQ上的高,AE∥DB,如图1,将△PDQ分别沿AE,DB折起,使得P,Q重合于点C.AB中点为M,如图2.(Ⅰ)求证:CM⊥EM;(Ⅱ)若直线DM与平面ABC所成角的正切值为2,求二面角B﹣CD﹣E的大小.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)推导出△ABC是等边三角形,从而CM⊥AB,再由DB⊥AB,DB⊥BC,知DB⊥平面ABC,又EA∥DB,从而EA⊥平面ABC,进而CM⊥EA.由此CM⊥平面EAM.进而能证明CM⊥EM.(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M﹣xyz.利用向量法能求出二面角B﹣CD﹣E的平面角.【解答】证明:(Ⅰ)因为A,B是PQ的三等分点,所以PA=AB=BQ=CA=CB,所以△ABC是等边三角形,又因为M是AB的中点,所以CM⊥AB.因为DB⊥AB,DB⊥BC,AB∩BC=B,所以DB⊥平面ABC,又EA∥DB,所以EA⊥平面ABC,CM?平面ABC,所以CM⊥EA.因为AM∩EA=A,所以CM⊥平面EAM.因为EA?平面EAM,所以CM⊥EM.解:(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M﹣xyz.因为DB⊥平面ABC,所以∠DMB为直线DM与平面ABC所成角.由题意得tan,即BD=2MB,从而BD=AC.不防设AC=2,又AC+2AE,则CM=,AE=1.故B(0,1,0),C(,0,0),D(0,1,2),E(0,﹣1,1).于是=(,﹣1,0),=(0,0,2),=(﹣),=(﹣,1,2),设平面BCD与平面CDE的法向量分别为=(x,y,z),=(a,b,c),由,令x=1,得=(1,,0).由,令a=1,得=(1,﹣,),所以cos<>=0.所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚车租赁服务合同终止
- 医用外科口罩购销合同
- 设计勘察分包合同
- 木工分包合同的支付方式
- 广告发布服务合同
- 钢筋交易合同
- 联营共营合同范本
- 暴行之后的家暴反省
- 2024企业工资专项集体合同范本
- 2024培训合同样书
- 职业道德题库试题及答案
- 概率论与数理统计试卷及答案4套
- 新《劳动合同法》知识学习考试题库200题(含答案)
- 2024新教科版一年级科学上册第一单元《周围的植物》全部教案
- 2024云南丽江玉龙国资本投资运营限责任公司招聘笔试高频考题难、易错点模拟试题(共500题)附带答案详解
- 影视制作项目流程与执行预案
- 三级安全培训考试题附参考答案(完整版)
- 《信息安全数学基础.》全套教学课件
- 前程无忧的题库
- 统编版语文二年级上册第五单元 小故事中的大智慧单元任务群整体公开课一等奖创新教学设计
- 【新教材】冀教版(2024)七年级上册英语Unit 6单元测试卷(含答案)
评论
0/150
提交评论