2022上海凯旋中学高二数学理联考试题含解析_第1页
2022上海凯旋中学高二数学理联考试题含解析_第2页
2022上海凯旋中学高二数学理联考试题含解析_第3页
2022上海凯旋中学高二数学理联考试题含解析_第4页
2022上海凯旋中学高二数学理联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022上海凯旋中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数在时取得极值,则实数的值是()A、 B、 C、 D、参考答案:D略2.已知直线l的参数方程为(t为参数),则其直角坐标方程为()A.x+y+2-=0

B.x-y+2-=0C.x-y+2-=0 D.x+y+2-=0参考答案:B3.已知△ABC中,a,b,c分别为角A,B,C的对边,,则∠B等于()A.60° B.30°或150° C.60° D.60°或120°参考答案:D【考点】正弦定理.【分析】利用正弦定理把代入即可求得sinB的值,进而求得B.【解答】解:由正弦定理可知=∴sinB=b?=4×=∵0<B<180°∴B=60°或120°故选D4.满足线性约束条件的目标函数的最大值是(

)A.1 B.

C.2

D.3参考答案:C5.双曲线x2﹣4y2=1的焦距为()A. B. C. D.参考答案:C【考点】双曲线的简单性质.【分析】将所给的双曲线方程化成标准方程,根据双曲线中的a,b,c的关系求解c,焦距2c即可.【解答】解:双曲线x2﹣4y2=1,化成标准方程为:∵a2+b2=c2∴c2==解得:c=所以得焦距2c=故选:C.6.函数的零点所在的区间是(

)A. B. C. D.参考答案:B【分析】连续函数在(0,+∞)上单调递增且f()<0,f()>0,根据函数的零点的判定定理可求.【详解】∵连续函数在(0,+∞)上单调递增,∵f()0,f()0,∴函数的零点所在的区间为(,),故选:B.【点睛】一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在[a,b]上单调且f(a)f(b)<0,则f(x)在[a,b]上只有一个零点.7.下列命题中正确的是A.垂直于同一平面的两个平面平行B.存在两条异面直线同时平行于同一个平面C.若一个平面中有无数条直线与另一个平面平行,则这两个平面平行D.三点确定一个平面参考答案:B8.已知双曲线的一条渐近线过点(2,-1),则双曲线的离心率为()A.

B.

C.

D.参考答案:C双曲线渐近线方程为,因为渐近线过点,所以,选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+ B.+ C.+ D.3参考答案:B【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.10.不等式|2x﹣3|<5的解集为()A.(﹣1,4) B.(﹣∞,﹣1)∪(4,+∞) C.(﹣∞,4) D.(﹣1,+∞)参考答案:A【考点】绝对值不等式的解法.【分析】利用绝对值不等式的解法可知,|2x﹣3|<5?﹣5<2x﹣3<5,从而可得答案.【解答】解:∵|2x﹣3|<5,∴﹣5<2x﹣3<5,解得:﹣1<x<4,故选;A.二、填空题:本大题共7小题,每小题4分,共28分11.正方体ABCD﹣A1B1C1D1中,AC与BD交于点O,则异面直线OC1与AD1所成角的大小为.参考答案:30°考点:异面直线及其所成的角.专题:空间角.分析:连结BC1,AD1∥BC1,∠BC1O是异面直线OC1与AD1所成角,由此利用余弦定理能求出异面直线OC1与AD1所成角的大小.解答:解:连结BC1,∵AD1∥BC1,∴∠BC1O是异面直线OC1与AD1所成角,设正方体ABCD﹣A1B1C1D1中棱长为2,则BO==,C1O=,,∴cos∠BC1O===,∴∠BC1O=30°.∴异面直线OC1与AD1所成角的大小为30°.故答案为:30°.点评:本题考查异面直线OC1与AD1所成角的大小的求法,是基础题,解题时要注意余弦定理的合理运用.12.给出下列结论:

(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;

(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;

(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;

(4)若关于的不等式在上恒成立,则的最大值是1;

(5)甲、乙两人向同一目标同时射击一次,事件:“甲、乙中至少一人击中目标”与事件:“甲,乙都没有击中目标”是相互独立事件。其中结论正确的是

*

。(把所有正确结论的序号填上)参考答案:(1)(3)(4)略13.若命题“存在,使"是假命题,则实数m的取值范围为

。参考答案:14.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.参考答案:略15.在(﹣)n的展开式中,只有第5项的二项式系数最大,则n=

,展开式中常数项是.参考答案:8,

【分析】在(﹣)n的展开式中,只有第5项的第二项系数最大,由此求出n=8.从而Tr+1=()8﹣r(﹣1)rx8﹣2r,由8﹣2r=0,得r=4.由此能求出展开式中常数项.【解答】解:∵在(﹣)n的展开式中,只有第5项的二项式系数最大,∴n=8.∴Tr+1=()8﹣r(﹣)r=()8﹣r(﹣1)rx8﹣2r,由8﹣2r=0,得r=4.∴展开式中常数项是:()4(﹣1)4=.故答案为:8,.16.=________.参考答案:本题考查定积分因为,所以函数的原函数为,所以则17.已知下列命题:①命题“”的否定是“”②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中所有真命题的序号是

.参考答案:②①存在性命题的否定是全称命题,则命题“”的否定是“”,所以是错误的;②若“”为假命题,则均为假命题,则和都为真命题,所以“”为真命题;③当时,满足但不成立,所以“”是“”的充分不必要条件是不正确的;④“若,则且”,所以原命题是错误的,根据逆否命题与原命题等价性,可知逆否命题为假命题,所以不正确.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?参考答案:解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任意拿走两个有种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有种放法;第二类:有种放法.因此共有种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:种.

略19.解关于x的不等式.参考答案:解析:20.(本小题满分14分)如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE。(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD。参考答案:证明: (1)AD⊥平面ABE,AE平面ABE,∴AD⊥AE, 在矩形ABCD中,有AD∥BC,∴BC⊥AE。 ∵BF⊥平面ACE,AE平面ABE,∴BF⊥AE, 又∵BFBC=B,BF,BC平面BCE,∴AE⊥平面BCE。(7分)(2)设ACBD=H,连接HF,则H为AC的中点。∵BF⊥平面ACE,CE平面ABE,∴BF⊥CE,又因为AE=EB=BC,所以F为CE上的中点。在△AEC中,FH为△AEC的中位线,则FH∥AE又∵AE平面BFE,而FH平面BFE∴AE∥平面BFD。(14分)21.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.参考答案:【考点】Q4:简单曲线的极坐标方程.【分析】(1)由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得圆的直角坐标方程;(2)求得A,B的直角坐标,即可得到直线AB的方程;求得AB的距离和圆C和半径,求得圆C到直线AB的距离,由圆C上的点到直线AB的最大距离为d+r,运用三角形的面积公式,即可得到所求最大值.【解答】解:(1)由ρ=2cosθ,可得:ρ2=2ρcosθ,所以x2+y2=2x故在平面直角坐标系中圆的标准方程为:(x﹣1)2+y2=1

…(2)在直角坐标系中A(0,3),B(,)所以|AB|==3,直线AB的方程为:x+y=3所以圆心到直线AB的距离d==,又圆C的半径为1,所以圆C上的点到直线AB的最大距离为+1故△ABP面积的最大值为S==

…(10分)【点评】本题考查极坐标方程和直角坐标方程的互化,直线和圆方程的运用,注意运用圆上的点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论