版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
素养综合练测34图形的平移、旋转与位似(时间:45分钟)题号12345答案BABCD1.(2021·苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是(B)2.(2021·重庆A)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是(A)A.1∶2 B.1∶4 C.1∶3 D.1∶93.(2021·邵阳)如图,在△AOB中,AO=1,BO=AB=eq\f(3,2).将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连结AA′,则线段AA′的长为(B)A.1 B.eq\r(2) C.eq\f(3,2) D.eq\f(3,2)eq\r(2)4.(2021·广安)如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为(C)A.65° B.70° C.75° D.80°5.(2021·天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连结AD.当点A,D,E在同一条直线上时,下列结论一定正确的是(D)A.∠ABC=∠ADC B.CB=CDC.DE+DC=BC D.AB∥CD6.(2021·长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为(3,1).7.(2021·青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为4cm2.8.(2021·黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为(4,2)或(-4,-2).9.(2021·枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,-1).10.(2021·桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连结BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是eq\r(6)+eq\r(2).11.(2021·达州)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.△A1C1C2的面积为4×8-eq\f(1,2)×2×8-eq\f(1,2)×2×3-eq\f(1,2)×5×4=11.12.(2021·泰安)如图,在矩形ABCD中,AB=5,BC=5eq\r(3),点P在线段BC上运动(含B,C两点),连结AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连结DQ,则线段DQ的最小值为(A)A.eq\f(5,2) B.5eq\r(2) C.eq\f(5\r(3),3) D.313.(2021·巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ∶AQ=3∶1,则AM=eq\f(2,5).14.(2021·南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为eq\f(9,8).15.(2021·贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是AE=CF;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.图1图2图3解:(1)AE=CF(2)结论仍成立.证明:∵∠BAC=90°,O为BC中点,∴OA=OC=OB.由旋转可知,OA=OE,OC=OF,∠AOC=∠EOF,∴∠AOE=∠COF,OE=OF.∴△AOE≌△COF(SAS).∴AE=CF.(3)由旋转的性质可知OE=OA,OC=OF.∵OA=OD,∴OE=OA=OD=5.∴∠AED=90°,AD=10.∵OA=OE,OC=OF,∠AOE=∠COF,∴eq\f(OA,OC)=eq\f(OE,OF).∴△AOE∽△COF.∴eq\f(AE,CF)=eq\f(OA,OC).∵CF=OA=5,OC=eq\f(1,2)BC=3,∴eq\f(AE,5)=eq\f(5,3).∴AE=eq\f(25,3).∵∠AED=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拉萨写招股协议书范文的公司
- 异地工作室合伙协议书范文模板
- 游乐园转让出售协议书范文
- 《供应链管理》课件 第9章 供应链金融管理
- 新高考语文二轮复习高频考点专项练习:专题六 考点10 修辞(1)(含答案)
- 吉林师范大学《素描人体技法解析》2021-2022学年第一学期期末试卷
- 吉林师范大学《计量地理学》2021-2022学年第一学期期末试卷
- 体育协会赛事管理制度
- 生态修复钢筋混凝土挡土墙施工方案
- 钢结构工程施工技术准备方案
- 试桩施工方案 (完整版)
- 走中国工业化道路的思想及成就
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- Prolog语言(耐心看完-你就入门了)
- 保霸线外加电流深井阳极地床阴极保护工程施工方案
- 蓝色商务大气感恩同行集团公司20周年庆典PPT模板
- 恒温箱PLC控制系统毕业设计
- 雍琦版 《法律逻辑学》课后习题答案
- 176033山西《装饰工程预算定额》定额说明及计算规则
- 新技术、新材料、新工艺”试点输电线路建设的通知国家电网
评论
0/150
提交评论