下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3位似专题一开放探究题1.在如图所示的方格纸中(每个小方格的边长都是1个单位)有一点O和△ABC.(1)请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),得到△;(2)请用适当的方式描述△的顶点的位置.专题二实际应用题2.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为()A.8cm B.203.如图,印刷一张矩形的张贴广告,它的印刷面积是32dm2,两边空白各0.5dm,上下空白各1dm,设印刷部分从上到下长是xdm,四周空白的面积为Sdm2.(1)求S与x的关系式;(2)当要求四周空白处的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?(3)在(2)问的条件下,内外两个矩形是位似图形吗?为什么?专题三一题多变题4.已知五边形ABCDE与五边形A′B′C′D′E′是位似图形,O是位似中心,OD∶OD′=2∶3,如图所示,求S五边形ABCDE与S五边形A′B′C′D′E′之比是多少?(1)一变:若已知条件不变,五边形ABCDE的周长为32cm,求五边形A′B′C′D′E′的周长;(2)二变:已知条件不变,试判断△ODE与△OD′E′是位似图形吗?专题四阅读理解题5.阅读下面材料:“如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.”(1)选择:如图1,点O是等边△PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形,此时,△P′Q′R′与△PQR的位似比、位似中心分别为()A.2,点P B.eq\f(1,2),点P C.2,点O D.eq\f(1,2),点O(2)如图2,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的问题的画法:①在△AOB内画等边△CDE,使点C在OA上,点D在OB上,②连结OE并延长交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,过点E′作E′D′∥ED交OB于点D′;③连结C′D′,则△C′D′E′是△AOB的内接三角形,求证:△C′D′E′是等边三角形.【知识要点】1.两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫做位似图形.2.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或者-k.【温馨提示】1.位似图形的位似中心可以在任何位置.2.解决位似图形中相关图形的周长、面积问题时,一般地首先要确定位似图形的相似比,然后再根据相似形的性质解决问题.【方法技巧】1.利用位似,可以将一个图形放大或缩小.2.判定两个图形是位似图形,必须同时满足两个条件:(1)两个图形相似;(2)两个图形所有对应顶点所在直线相交于同一点.3.在数学上,往往先在一个已知图形中通过探究找出一个正确的结论,再将图形进行适当变换,然后探究这个结论在变换后的图形中是否成立,最后利用发现的一般规律去指导并解决问题,这种研究问题的方法是训练发散思维与创新意识的有效途径.参考答案解:(1)按位似作图在O点与△ABC同侧把△ABC缩小一半,得到△;第(2)问是一个开放性问题,对描述△的顶点的位置的方式不确定,如果建立直角坐标系来描述的位置,假设以O为坐标原点,建立平面直角坐标系.那么A′的坐标为(-4,1),B′的坐标为(-5,-1),C′的坐标为(-2,-1).2.B【解析】8:投影三角形的对应边长=2:5.3.解:(1)根据题意,得S=x++2.(2)根据题意,得x++2=18,整理,得x2-16x+64=0,∴(x-8)2=0,∴x=8,∴x+2=10.所以这张广告纸的长为10dm,宽为+2×0.5=5(dm).(3)内外两个矩形是位似图形,理由如下:因为内外两矩形的长,宽的比都为2,∴.∵矩形的各角都为90°,所以矩形ABCD∽矩形A′B′C′D′.∵AC和BD,A′C′和B′D′都相交于O点,∴矩形ABCD与矩形A′B′C′D′是位似图形.4.解:∵五边形ABCDE与五边形A′B′C′D′E′是位似图形,OD:OD′=2:3,∴===.(1)由题意可知五边形ABCDE与五边形A′B′C′D′E′的位似比为=,∴==.∵C五边形ABCDE=32cm,∴C五边形A′B′C′D′E′=C五边形ABCDE×=32×=48(cm).(2)∵五边形ABCDE与五边形ABCDE是位似图形,∴==,∴△ODE∽△OD′E′.由题图可知△ODE与△OD′E′的对应点的连线都经过点O,∴△ODE与△OD′E′是位似图形.5.解:(1)由位似的定义,观察图l知:点O是位似中心,根据三角形中位线的性质可推出位似比为1/2,故选D.(2)证明:∵EC∥E′C′,∴,∠CEO=∠C′E′O.∵ED∥E′D′,∴,∠DEO=∠D′E′O′,故,∠CED=∠C′E′D′.∵△CDE是等边三角形,∴CE=DE,∠CED=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB12T 598.5-2015 天津市建设项目用地控制指标 第5部分:市政基础设施项目
- 中职校长在新学期教职工大会上的讲话稿(8篇)
- 个人自我小结
- 报关实务-教学课件 第四章 海关税收
- 航空航天用带沉头窝的MJ螺纹减小型角形托板自锁螺母 征求意见稿
- 老师培训课件教学课件
- 骨科的课件教学课件
- 怎么修改课件教学
- 2025 高考语文总复习 第三部分 语言文字运用(含解析)
- 关于项目工程实测实量质量奖罚办法的通知g
- 新人教版八年级物理上册期中考试及答案【可打印】
- 绿色钢铁产业链构建
- 2024年企业股东退股补偿协议版
- 河南省商丘市2023-2024学年高一上学期期中考试化学试题(含答案)
- V带传动设计说明书
- 墓地长期租用合同模板
- 职校开学第一课课件:谁说职业没前途
- 行政复议法-形考作业4-国开(ZJ)-参考资料
- GB/T 5762-2024建材用石灰石、生石灰和熟石灰化学分析方法
- 广东开放大学(专科)工商企业管理专业 案例分析报告
- 特种设备锅炉日管控、周排查、月调度主要项目及内容表
评论
0/150
提交评论