下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学业分层测评(建议用时:45分钟)学业达标]一、选择题1.将一颗均匀骰子掷两次,不能作为随机变量的是()A.两次掷得的点数B.两次掷得的点数之和C.两次掷得的最大点数D.第一次掷得的点数减去第二次掷得的点数差【解析】两次掷得的点数的取值是一个数对,不是一个数.【答案】A2.一串钥匙有6把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大可能取值为()A.6 B.5C.4 D.2【解析】由于是逐次试验,可能前5次都打不开锁,那么剩余钥匙一定能打开锁,故选B.【答案】B3.抛掷两枚骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验的结果是()A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点【解析】ξ=4可能出现的结果是一枚是3点,一枚是1点或两枚都是2点.【答案】D4.袋中有大小相同的红球6个,白球5个,不放回地从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为()A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5【解析】由于取到白球游戏结束,那么取球次数可以是1,2,3,…,7,故选B.【答案】B5.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()A.X=4 B.X=5C.X=6 D.X≤4【解析】第一次取到黑球,则放回1个球;第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X=6.【答案】C二、填空题6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有______种.【解析】ξ=8表示三个篮球最大号码为8,另外两个从1~7七个号码中取2个共有Ceq\o\al(2,7)=21种.【答案】217.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.【导学号:62690028】【解析】可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.【答案】300,100,-100,-3008.设某项试验的成功率是失败率的2倍,用随机变量x描述1次试验的成功次数,则x的值可以是________.【解析】这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故x可能取值有两种,即0,1.【答案】0,1三、解答题9.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为ξ.(1)写出ξ的所有可能取值;(2)写出{ξ=1}所表示的事件.【解】(1)ξ可能取的值为0,1,2,3.(2){ξ=1}表示的事件为:第一次取得次品,第二次取得正品.10.某篮球运动员在罚球时,命中1球得2分,命不中得0分,且该运动员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果.(2)若记该运动员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.【解】(1)ξ可取0,1,2,3,4,5.表示5次罚球中分别命中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.能力提升]1.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.20 B.24C.4 D.18【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有Aeq\o\al(4,4)=24种.【答案】B2.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是()A.25 B.10C.7 D.6【解析】y的可能的值为3,4,5,6,7,8,9共7个.【答案】C3.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用ξ表示需要比赛的局数,则{ξ=6}表示的试验结果有________种.【解析】{ξ=6}表示前5局中胜3局,第6局一定获胜,共有Ceq\o\al(1,2)·Ceq\o\al(3,5)=20种.【答案】204.设一汽车在开往目的地的道路上需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳市易夏电子科技有限公司-加工承揽协议书
- 建筑工程技术实习报告
- 房屋委托装修出售合同
- 《重庆配合比宣贯》课件
- 版手房买卖合同
- 个人之间的委托投资协议
- 2024年度知识产权许可使用合同详细解读3篇
- 花的类型课件
- 2024年度物流合同:国际快递服务与供应链管理2篇
- 课件素材结束语图片
- Module8Unit1WeregoingtovisitHainan(课件)英语四年级上册
- 北斗应用设备项目市场营销方案
- 安全标兵申报材料
- 混凝土搅拌站安装指导工艺课件
- 14普罗米修斯 一等奖创新教学设计
- 工程造价师招聘模板范本
- 保证书(女方出轨)
- 第十四章精神科护理相关的伦理和法律
- 洗车机操作保养规程
- 电杆套筒基础施工方案
- 自我评价主要学术贡献、创新成果及其科学价值或社会经济意义
评论
0/150
提交评论