复变函数-第一讲_第1页
复变函数-第一讲_第2页
复变函数-第一讲_第3页
复变函数-第一讲_第4页
复变函数-第一讲_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课程名称复变函数教材《复变函数》(四版)西安交通大学高等数学教研室编总学时32学时教师姓名__刘艳__课程简介1对象复变函数(自变量为复数的函数)主要任务研究复变数之间的相互依赖关系,具体地就是复数域上的微积分。主要内容复变函数的积分、级数、留数、共形映射等。复数与复变函数、解析函数、2学习方法复变函数中许多概念、理论、和方法是实变函数在复数域内的推广和发展,它们之间有许多相似之处。但又有不同之处,在学习中要善于比较、区别、特别要注意复数域上特有的那些性质与结果。3背景复数是十六世纪人们在解代数方程时引进的。为使负数开方有意义,需要再一次扩大数系,使实数域扩大到复数域。但在十八世纪以前,由于对复数的概念及性质了解得不清楚,用它们进行计算又得到一些矛盾,所以,在历史上长时期人们把复数看作不能接受的“虚数”。直到十八世纪,J.D’Alembert(1717-1783)与L.Euler(1707-1783)等人逐步阐明了复数的几何意义和物理意义,澄清了复数的概念,并且应用复数和复变函数研究了流体力学等方面的一些问题。复数才被人们广泛承认接受,复变函数论才能顺利建立和发展。4复变函数的理论基础是十九世纪奠定的。A.L.Cauchy(1789-1866)和K.Weierstrass(1815-1897)分别应用积分和级数研究复变函数,G.F.B.Riemann(1826-1866)研究复变函数的映照性质。他们是这一时期的三位代表人物。经过他们的巨大努力,复变函数形成了非常系统的理论,且渗透到了数学的许多分支,同时,它在热力学,流体力学和电学等方面也得到了很多的应用。二十世纪以来,复变函数已被广泛地应用在理论物理、弹性理论和天体力学等方面,与数学中其它分支的联系也日益密切。5第一讲复数6§1复数及其代数运算

§2复数的表示方法

§3复数的乘幂与方根7一、复数的概念1.虚数单位:对虚数单位的规定:82.复数:9两复数相等当且仅当它们的实部和虚部分别相等.复数z

等于0当且仅当它的实部和虚部同时等于0.说明两个数如果都是实数,可以比较它们的大小,如果不全是实数,就不能比较大小,也就是说,复数不能比较大小.10二、复数的代数运算1.两复数的和:2.两复数的积:3.两复数的商:114.共轭复数:实部相同而虚部绝对值相等符号相反的两个复数称为共轭复数.例2解125.共轭复数的性质:以上各式证明略.13例解14例解1516

1.点的表示

2.向量表示法

3.三角表示法

4.指数表示法§2复数的表示方法171.点的表示点的表示:

数z与点z同义.182.向量表示法

oxy(z)P(x,y)xy

称向量的长度为复数z=x+iy的模或绝对值;以正实轴为始边,以为终边的角的弧度数称为复数z=x+iy的辐角.(z≠0时)19辐角无穷多:Argz=θ=θ0+2kπ,k∈Z,把其中满足的θ0称为辐角Argz的主值,记作θ0=argz。

z=0时,辐角不确定。

计算argz(z≠0)的公式20当z落于一,四象限时,不变。

当z落于第二象限时,加。

当z落于第三象限时,减。

214.利用平行四边形法求复数的和差两个复数的加减法运算与相应的向量的加减法运算一致.225.复数和差的模的性质23利用直角坐标与极坐标的关系复数可以表示成复数的三角表示式再利用欧拉公式复数可以表示成复数的指数表示式6.复数的三角表示和指数表示24引进复数的几何表示,可将平面图形用复数方程(或不等式)表示;反之,也可由给定的复数方程(或不等式)来确定它所表示的平面图形。例1用复数方程表示:(1)过两点zj=xj+iyj

(j=1,2)的直线;(2)中心在点(0,-1),

半径为2的圆。oxy(z)Lz1z2z解(1)z=z1+t(z2-z1)

(-∞<t<+∞)25xy(z)O(0,-1)226例1将下列复数化为三角表示式与指数表示式:解故三角表示式为注意.复数的各种表示法可以相互转化,以适应不同问题的需要.27指数表示式为故三角表示式为指数表示式为28二、复球面1.南极、北极的定义29球面上的点,除去北极N外,与复平面内的点之间存在着一一对应的关系.我们可以用球面上的点来表示复数.我们规定:复数中有一个唯一的“无穷大”与复平面上的无穷远点相对应,记作.因而球面上的北极N就是复数无穷大的几何表示.球面上的每一个点都有唯一的复数与之对应,这样的球面称为复球面.2.复球面的定义303.扩充复平面的定义包括无穷远点在内的复平面称为扩充复平面.不包括无穷远点在内的复平面称为有限复平面,或简称复平面.对于复数来说,实部,虚部,辐角等概念均无意义,它的模规定为正无穷大.复球面的优越处:能将扩充复平面的无穷远点明显地表示出来.3132

1.复数的乘积与商

2.复数的乘幂

3.复数的方根§3复数的乘幂与方根33定理1

两个复数乘积的模等于它们的模相乘,两个复数乘积的辐角等于它们的辐角相加。证明设z1=r1(cosθ1+isinθ1)=r1eiθ1

z2=r2(cosθ2+isinθ2)=r2eiθ2则z1z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)1.乘积与商因此|z1z2|=r1r2,Arg(z1z2)=Argz1+Argz234几何意义将复数z1按逆时针方向旋转一个角度Argz2,再将其伸缩到|z2|倍。定理1可推广到n个复数的乘积。oxy(z)z1z2z235要使上式成立,必须且只需k=m+n+1.36定理2

两个复数的商的模等于它们的模的商,两个复数的商的辐角等于被除数与除数的辐角之差。证明Argz=Argz2-Argz1即:由复数除法的定义z=z2/z1,即z1z=z2∵|z||z1|=|z2|及Argz1+Argz=Argz2(z1≠0)37设z=reiθ,由复数的乘法定理和数学归纳法可证明zn=rn(cosnθ+isinnθ)=rneinθ。2.复数的乘幂定义n个相同的复数z的乘积,称为z的n次幂,记作zn,即zn=zzz(共n个)。定义特别:当|z|=1时,即:zn=cosnθ+isinnθ,则有(cosθ+isinθ)n=cosnθ+isinnθ一棣模佛(DeMoivre)公式。38问题给定复数z=rei,求所有的满足ωn=z的复数ω。3.复数的方根(开方)——乘方的逆运算当z≠0时,有n个不同的ω值与相对应,每一个这样的ω值都称为z的n次方根,39当k=0,1,…,n-1时,可得n个不同的根,而k取其它整数时,这些根又会重复出现。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论