线面平行的判定定理_第1页
线面平行的判定定理_第2页
线面平行的判定定理_第3页
线面平行的判定定理_第4页
线面平行的判定定理_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线与平面平行的判定

直线与平面有几种位置关系?复习引入

其中平行是一种非常重要的关系,不仅应用较多,而且是学习平面和平面平行的基础.

有三种位置关系:在平面内,相交、平行.问题怎样判定直线与平面平行呢?问题引入新课

根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?a在生活中,注意到门扇的两边是平行的.当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.问题实例感受门扇转动的一边与门框所在的平面之间的位置关系.问题实例感受将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?观察实例感受观察实例感受将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?观察实例感受将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?下图中的直线a与平面α平行吗?观察直线与平面平行如果平面内有直线与直线平行,那么直线与平面的位置关系如何?是否可以保证直线与平面平行?观察直线与平面平行平面外有直线平行于平面内的直线.(1)这两条直线共面吗?(2)直线与平面相交吗?探究直线与平面平行共面不可能相交平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.证明直线与平面平行,三个条件必须具备,才能得到线面平行的结论.直线与平面平行关系直线间平行关系空间问题平面问题直线与平面平行判定定理定理的应用例1.如图,空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF∥平面BCD.ABCDEF分析:要证明线面平行只需证明线线平行,即在平面BCD内找一条直线平行于EF,由已知的条件怎样找这条直线?证明:连结BD.∵AE=EB,AF=FD∴EF∥BD(三角形中位线性质)例1.如图,空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF∥平面BCD.ABDEF定理的应用1.如图,在空间四边形ABCD中,E、F分别为AB、AD上的点,若,则EF与平面BCD的位置关系是_____________.

EF//平面BCD变式1:ABCDEF变式2:ABCDFOE2.如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB//平面DCF.(04年天津高考)分析:连结OF,可知OF为△ABE的中位线,所以得到AB//OF.∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB//OF,BDFO2.如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB//平面DCF.证明:连结OF,ACE变式2:1.线面平行,通常可以转化为线线平行来处理.反思~领悟:2.寻找平行直线可以通过三角形的中位线、梯形的中位线、平行线的判定等来完成。3、证明的书写三个条件“内”、“外”、“平行”,缺一不可。1.如图,长方体中,(1)与AB平行的平面是

;(2)与平行的平面是

;(3)与AD平行的平面是

;平面平面平面平面平面平面巩固练习:分析:要证BD1//平面AEC即要在平面AEC内找一条直线与BD1平行.根据已知条件应该怎样考虑辅助线?巩固练习:2.如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1//平面AEC.ED1C1B1A1DCBAO证明:连结BD交AC于O,连结EO.∵O为矩形ABCD对角线的交点,∴DO=OB,又∵DE=ED1,∴BD1//EO.ED1C1B1A1DCBAO巩固练习:如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1//平面AEC.归纳小结,理清知识体系1.判定直线与平面平行的方法:(1)定义法:直线与平面没

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论