版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冲击波理论
——研究生课程主讲人:彭金华Email:pengjh@教学目的
本课程旨在比较深入、系统地介绍气体中运动的定常、非定常冲击波传播及与其它间断面的相互作用,使学生掌握基本物理概念和计算方法,以便为开展科学研究和解决有关工程技术问题奠定基础。课程大纲1基本概念和方程(6学时)1.1守恒方程1.2介质状态方程1.3理想流体运动方程组1.4伯努力方程1.5不可压缩流体运动方程组1.6流体力学方程组的积分形式1.7间断面及间断关系式第一讲第二讲
课程大纲(续)2正冲击波(15学时)2.1冲击波基本概念和关系式2.2多方气体冲击波关系式2.3凝聚介质冲击波关系式2.4雨贡纽曲线及瑞利曲线2.5冲击波基本性质2.6冲击波熵增及耗散过程2.7弱冲击波的声学近似2.8冲击波的相互作用2.9冲击波与稀疏波的相互作用2.10冲击波与交界面的相互作用2.11初始间断分解第三讲第四讲第五讲第六讲第七讲课程大纲(续)3斜冲击波(6学时)3.1斜冲击波极曲线3.2斜冲击波在固壁上的正规反射3.3斜冲击波在固壁上的马赫反射3.4斜冲击波在自由面上的正规反射3.5斜冲击波在物质界面上的正规折射3.6两冲击波斜碰撞4非定常冲击波传播(3学时)4.1二维Whitham方法4.2冲击波的绕射4.3点爆炸问题的自模拟解4.4球面冲击波的聚心运动5冲击波技术的应用第八讲第九讲第十讲教材选用1)李维新.一维不定常流与冲击波.北京:国防工业出版社.20032)周毓麟.一维非定常流体力学.北京:科学出版社.19983)王继海.二维非定常流和激波.北京:科学出版社.1994考核上课出勤率,回答问题及听课情况,占总成绩10%;学期中,每人写一篇读书报告或准备一节课的教学内容,上讲台交流,占总成绩20%;学期末,开卷考试,考试时间2小时,试卷分100分,占总成绩70%。第一章基本概念和方程
1.1守恒方程质点:介质的微元叫作“流体质点”或“质点”。当说质点速度时,指的并非各分子的速度,而是微元整体的速度,当说到质点密度、压力等状态量时,指的则是该微元体现的平衡态宏观量。宏观小、微观大
守恒方程的一般形式
强度量:单位体积的量,例如密度、动量密度、能量密度、压力等,这类量不随体积的增加而增加;广延量:强度量对体积积分的结果,例如质量、动量、能量、熵等,这类量对体积是可加的。设L(r,t)是所讨论宏观系统中介质的某一强度量,它是空间坐标r=r(x,y,z)和时间t的函数。在系统中任取一个体积V,则L(r,t)对应的广延量是当L是一守恒量时,对于非孤立系统,的变化由两项组成:一项是单位时间内在体积V内ψ的产生项,即源项,把它记作P(ψ);另一项是单位时间内通过体积V的表面积S流走ψ的流项,将它记作J(ψ),即(1.1)这里ψ(t)只是t的函数,故与的含义相同。对P(ψ)和J(ψ)也可用其相应的强度量表出其中σ是单位时间单位体积内ψ的源,而其中j是单位时间内通过表面单位面积的ψ的流,这里j和面积dS都是矢量,定义表面积的外法线方向为正。一般形式守恒方程的积分形式(1.2)再利用格林(Green)公式把式中最后一项的面积分化为体积分,上式可化为(1.3)其中▽是符号算子,在直角坐标系(x,y,z)中因(1.3)式对任意的体积V都成立,当所有的量在V内是连续变量时,该式就意味着积分号内整个被积函数应等于零,故得守恒方程的微分形式(1.4)对于孤立系统,不存在与外界的交换,也无源,这时ψ的守恒方程为这里和以后都用表示当地的时间微商,以表示随体微商,它们的关系是其中u=u(u,v,w)是介质的速度矢量。质量守恒方程
质量对应的强度量,即单位体积的质量是密度ρ,现令L=ρ。因质量不产生也不消亡,故源项σ=0。ρ的流只有运流,故流项j=ρu,这里u是介质的宏观速度。于是,代人(1.4)式得(1.5)这就是熟知的质量守恒方程,也称为连续性方程。展开上式中的散度所以或者若在运动过程中介质的ρ始终保持不变,即dρ/dt=0,则这种介质称为不可压缩介质。对不可压缩介质,连续性方程特别简单,为动量守恒方程
动量的强度量是动量密度ρu,即现在令L=ρu。当存在外力场的作用时,根据牛顿定律,外力对介质的作用将导致介质动量增加,故外力是产生动量的源。设F是作用于介质单位质量的外力,则ρF为作用于单位体积的外力,于是动量密度的源σ=ρF。动量密度本身是一个矢量,它的流则应是个张量。其中运流即随质点运动带走的动量密度流是ρuu,这里ρuu是并矢张量,例如分量ρuux就代表动量ρu在x方向的流量。另外是扩散流,因为介质中的应力张量∏要导致动量的扩散,所以在所讨论系统的表面积上将产生流过该面积的扩散流-∏,这里取负号是因为应力朝表面积外法向为正,故应力给外界产生的动量为正,而给本系统产生的动量则为负。所以,动量密度的流,j=ρuu-∏。于是,根据(1.4)式得动量守恒方程(1.6)所以(1.7)纳维—斯托克斯(Navier—Stokes)方程
粘性流体的动量方程,其标量形式(1.8)其中μ是粘性系数,称为运动粘性系数欧拉(Euler)方程
对于不可压缩粘性流体,(1.8)式化简为(1.9)对于非粘性流体,在无外力作用情况下,动量守恒方程就化为(1.10)这个方程也叫作欧拉(Euler)方程。
能量守恒方程
单位体积的总能为ρE,即令L=ρE(1.11)总能的源有两部分,一是介质本身释放的能量,二是外力F对介质做的功,即总能的流包括:①随介质运动带走的能量,即运流ρEu;②因热传导而在单位时间内流过单位面积的能量流q;③应力单位时间内在单位面积上所做的功。于是能量流项为将以上各项代人(1.4)式,就得到总能守恒方程为(1.12)或写为(1.13)并利用到质量守恒方程(1.5),则(1.12)式可化为(1.14)内能守恒方程(1.15)常用的内能守恒方程(1.16)也称为内能平衡方程。它表明,介质内能的增量等于如下几项之和:①周围介质对本介质做的压缩功,即;②外界向介质输入的热量;③介质表面上应力做的功;④介质本身释放的能量。当无能源、无耗散应力时,内能守恒方程则为(1.17)这表明,外界向介质输入的热量,将用于增加介质的内能和使介质对外做功。这就是大家熟知的热力学第一定律。在无能源、无热传导、无耗散作用的腈况下,内能守恒方程非常简单,即(1.18)守恒方程小结最一般形式的流体动力学方程组:(1.19)非守恒形式的流体动力学方程组:(1.20)在无能源、无外力、无热传导的情况下,粘性流体动力学方程组为(1.21)同上情况下,非粘性流体动力学方程组是(1.22)
若把这组方程写为随体微商,即拉格朗日(Lagrange)时间微商的形式则为
(1.23)
以上得到的流体动力学方程组,其方程个数是五个(其中动量方程是三个),而方程中待求物理量为ρ、p、e、u(u,v,w)共六个,比方程的个数多一个。一维运动情况也如此,方程是三个,待求量共四个。为了对问题求解.还需再补充一个方程,这就要给出一个表达状态量ρ、p和e之间关系的方程,即状态方程。所以,求解流体动力学问题,除流体动力学方程组外,还需再加一个状态方程,才能构成封闭方程组。1.2介质状态方程四个热力学关系式是
(1.24)
第一式是热力学第一定律,其余各式是由第一式及如下定义导出的。(1.25)hpτepτFTsGTs状态方程是涉及介质具体性质的热力学量之间的关系式,通常是指介质的p,τ,T之间的关系式,并常用τ,T或p,T为自变量,即或有时也把内能函数视为状态方程。在英文文献中状态方程equationofstate(EOS)一词通常指p=p(τ,T),有时也称它为温态方程thermalEOS,e=e(τ,T)称为能态方程caloricEOS。根据热力学理论,有了以上两个方程,介质的热力学性质就全部知道了。在流体动力学中通常多采用p、ρ、e之间关系的状态方程,即或一般流体(气体)的性质
(1)熵不变时,压力总是随密度的增加(比容的减小)而增加。(1.26)当ρ=0时,=0。所以永远为正,于是可以定义一个如下的恒正的量:(1.27)c称为声速,是一个很重要的量。(2)熵不变时,声速将随密度的增加而增加。即有(1.28)(3)比容不变时,压力随熵的增加而增加。即有(1.29)(4)对于气体,其密度可趋近于零,再作以下假定:当ρ→0时(1.30)
理想气体
pτ=RT(1.31)式中R是常数.它等于气体普适常数除以气体的摩尔质量。理想气体有时也叫作完全气体。(1.32)(1.33)(1.33)(1.34)(1.33)多方气体
当理想气体的比定容热容cV为常数时,则由(1.32)式积分可得(1.35)由热力学第一定律对多方气体得常用的多方气体的状态方程(1.36)对于等熵过程,A(S)为常数,故多方气体的等熵状态方程为(1.37)指数γ是比热比,也称为多方指数或绝热指数。从γ的定义(1.34)看到,总有γ>1,根据统计力学和热力学得知,其中l是气体粒子的内部自由度。对于单原子气体(如氢、氖),内部自由度l=0,故γ=5/3;对双原子气体(如氧、氮、空气等),在温度不高时有两个转动自由度,l=2,故γ=7/5,当温度较高时,振动自由度被激发,自由度增加到l=4,这时γ=9/7。对多方气体.还容易得到(1.38)(1.39)(1.40)凝聚介质
通常可把凝聚介质的压力和内能分别表示为如下一般形式(1.41)(1.42)式中pc和ec,分别是冷压和冷能,它们只是比容的函数,pT和eT是热压和热能,它们同时依赖于比容和温度。
格留纳森
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗设备采购与维护合同with技术支持与售后服务
- 2024年度物联网智能硬件设备研发与生产合同3篇
- 2024年度承包合同(建筑工程版)
- 2024年度物流仓储服务与货物运输合同2篇
- 2024年度房产买卖合同标的及交易程序
- 2023年陶瓷资金需求报告
- 2024中国电信贵州公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人民财产保险股份限公司永嘉支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中储粮油脂镇江基地招聘41人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海红浦劳务派遣限公司招聘10名易考易错模拟试题(共500题)试卷后附参考答案
- 宜宾市2022级(2025届)高三第一次诊断性测试(一诊)历史试卷(含答案)
- 2024-2025部编版语文一年级上册8-比尾巴Repaired
- 2023年中国建筑第八工程局有限公司招聘考试真题
- 2024年湖北省公务员考试《行测》真题及答案解析
- 停车场硬化施工方案及管理措施
- 2024年国家焊工职业技能理论考试题库(含答案)
- 职业技能培训机构教学管理规范
- 湖北省十堰市第二中学2024-2025学年七年级上学期期中考试语文试题(含答案)
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
- 护理病侵入性肺曲霉菌病案临床病例呼吸科
- 《篮球移动技术 行进间传球》教案(共三篇)
评论
0/150
提交评论