版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.实数的相反数是()A. B. C. D.2.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥3 B.a>3 C.a≤3 D.a<33.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有()A.1个 B.2个 C.3个 D.4个4.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20° D.25°6.下面运算正确的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|7.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为()A.3 B.4 C. D.58.若△÷,则“△”可能是()A. B. C. D.9.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.10.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5二、填空题(本大题共6个小题,每小题3分,共18分)11.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.12.4是_____的算术平方根.13.2017年端午小长假的第一天,永州市共接待旅客约275000人次,请将275000用科学记数法表示为___________________.14.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.15.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.16.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为.三、解答题(共8题,共72分)17.(8分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在2017年春节共收到红包400元,2019年春节共收到红包484元,求小王在这两年春节收到红包的年平均增长率.18.(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是,众数是;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?19.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.(1)求证:DE是⊙O的切线;(2)求EF的长.20.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(8分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.22.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.23.(12分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.先化简,再求值:(1﹣)÷,其中a=﹣1.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据相反数的定义求解即可.【详解】的相反数是-,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2、A【解析】
先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【详解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、D【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】由图象可得,出租车的速度为:600÷6=100千米/时,故(1)正确,客车的速度为:600÷10=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.4、B【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.5、A【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.6、D【解析】
分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质分别化简求出答案.【详解】解:A,,故此选项错误;B,,故此选项错误;C,,故此选项错误;D,,故此选项正确.所以D选项是正确的.【点睛】灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质可以求出答案.7、B【解析】
连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.【详解】连接DF,∵四边形ABCD是矩形∴在中,故选:B.【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.8、A【解析】
直接利用分式的乘除运算法则计算得出答案.【详解】。故选:A.【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键.9、D【解析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.10、A【解析】
直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.【解析】
变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、16.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.13、1.75×2【解析】试题解析:175000=1.75×2.考点:科学计数法----表示较大的数14、50°【解析】
利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.15、12.【解析】
设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,∵点D在反比例函数y=的图象上,∴D(a,),∴OA=,过点E作EN⊥OC于点N,交AB于点M,则OA=MN=,∵△OEC的面积为12,OC=2a,∴EN=,∴EM=MN-EN=-=;设ON=x,则NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵点E在在反比例函数y=的图象上,∴·=k,解得k=,∵k>0,∴k=12.故答案为:12.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.16、2【解析】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣1,2),∵双曲线y=经过点D,∴k=﹣1×2=﹣6,∴△BOC的面积=|k|=1.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.三、解答题(共8题,共72分)17、小王在这两年春节收到的年平均增长率是10【解析】
增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是x.依题意得:400解得x1答:小王在这两年春节收到的年平均增长率是10【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.18、(1)7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】
(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19、(1)见解析;(2).【解析】
(1)连接OD,根据切线的判定方法即可求出答案;(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.【详解】(1)连接OD,∵△ABC是等边三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等边三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切线(2)∵OD∥AC,点O是AB的中点,∴OD为△ABC的中位线,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE•sinA=3×sin60°=【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.20、29.8米.【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.【详解】解:如图,作,,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米.【点睛】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:,∴;∴P2(,).综上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角顶点,由对称性可直接得Q1(1,0);②若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN为等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度城市综合体个人车位租赁与增值服务合同3篇
- 2025年度办公用品租赁及定制化解决方案合同
- 2025年度XX汽车零部件制造厂厂房租赁合同解除协议
- 2025年度合伙人投资协议书:绿色建筑节能材料投资合作2篇
- 2025年度高标准沙子资源开发合作协议
- 2025年度二零二五年度工地个人安全协议及隐患排查3篇
- 2025年度二零二五年度生态旅游区场地无偿使用协议书3篇
- 2025年度二零二五年度大包建房抗震加固施工合同2篇
- 玉溪农业职业技术学院《发电厂电气部分实验》2023-2024学年第一学期期末试卷
- 企业人才培训协议书(2篇)
- 河北省邯郸市2023-2024学年高一上学期期末质量检测地理试题 附答案
- 环境、健康、安全施工管理体系及职责
- 2024年度物业管理公司员工奖惩制度3篇
- 湖南省雅礼教育集团2023-2024学年高二上学期期末英语试卷 含解析
- 2024年7月国家开放大学法学本科《知识产权法》期末考试试题及答案
- 医学生职业规划演讲
- 北京市西城区2022-2023学年六年级上学期数学期末试卷(含答案)
- 2024秋期国家开放大学本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 2024智能变电站新一代集控站设备监控系统技术规范部分
- 抵押贷款行业可行性分析报告
- MOOC 微观经济学-浙江大学 中国大学慕课答案
评论
0/150
提交评论