陕西省西安市碑林区西北工大2023学年中考数学最后冲刺浓缩精华卷含解析及点睛_第1页
陕西省西安市碑林区西北工大2023学年中考数学最后冲刺浓缩精华卷含解析及点睛_第2页
陕西省西安市碑林区西北工大2023学年中考数学最后冲刺浓缩精华卷含解析及点睛_第3页
陕西省西安市碑林区西北工大2023学年中考数学最后冲刺浓缩精华卷含解析及点睛_第4页
陕西省西安市碑林区西北工大2023学年中考数学最后冲刺浓缩精华卷含解析及点睛_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.下列二次根式中,最简二次根式是()A. B. C. D.2.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.3.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是()A.2 B. C.2 D.54.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离 B.相切 C.相交 D.不确定5.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是()A. B. C. D.6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>47.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.8.二次函数y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.99.的相反数是()A.2 B.﹣2 C.4 D.﹣10.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若二次根式有意义,则x的取值范围为__________.12.若是关于的完全平方式,则__________.13.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.14.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是_____.15.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.16.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.三、解答题(共8题,共72分)17.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x18.(8分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.19.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.20.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.21.(8分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.若半圆上有一点,则的最大值为________;向右沿直线平移得到;①如图,若截半圆的的长为,求的度数;②当半圆与的边相切时,求平移距离.22.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.23.(12分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.证明:∽;若,求的值;如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.24.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2、B【解析】

根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是,

故选:B.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.3、C【解析】

作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直径为,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.4、A【解析】

根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.5、D【解析】

如图,∵AD=1,BD=3,∴,当时,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.6、C【解析】

看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.7、A【解析】

由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根.∴函数y=ax2+(b-1)x+c与x轴有两个交点,又∵->0,a>0∴-=-+>0∴函数y=ax2+(b-1)x+c的对称轴x=->0,∴A符合条件,故选A.8、D【解析】

直接利用配方法得出二次函数的顶点式进而得出答案.【详解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x2﹣4x+5的最大值是9,故选D.【点睛】此题主要考查了二次函数的最值,正确配方是解题关键.9、A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:的相反数是,即2.故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.10、B【解析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≥﹣.【解析】

考点:二次根式有意义的条件.根据二次根式的意义,被开方数是非负数求解.解:根据题意得:1+2x≥0,解得x≥-.故答案为x≥-.12、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.13、1【解析】【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.【详解】如图,过点A作AD⊥x轴,垂足为D,∵tan∠AOC==,∴设点A的坐标为(1a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案为:1.【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、85°【解析】

设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.【详解】解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、220.【解析】试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键16、-1【解析】

先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=-a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC•EO=AB•CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案为-1.【点睛】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.三、解答题(共8题,共72分)17、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】

(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.18、见解析【解析】试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.解:如图所示,点P即为所求作的旋转中心.19、见解析【解析】

解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,∵,∴这个游戏对甲、乙双方不公平.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20、见解析【解析】

(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.【详解】(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD.∵四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.21、(1);(2)①;②【解析】

(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;(2)①连接EG、EH.根据的长为π可求得∠GEH=60°,可得△GEH是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO的度数;②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.【详解】解:(1)当点F与点D重合时,AF最大,AF最大=AD==,故答案为:;(2)①连接、.∵,∴.∵,∴是等边三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②当切半圆于时,连接,则.∵,∴切半圆于点,∴.∵,∴,∴平移距离为.当切半圆于时,连接并延长于点,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【点睛】本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.22、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论