版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.2.在实数,有理数有()A.1个 B.2个 C.3个 D.4个3.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y24.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米5.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.6.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30° B.35° C.40° D.50°7.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=108908.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A. B. C. D.9.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=10.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1 B.2 C.3 D.4二、填空题(共7小题,每小题3分,满分21分)11.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.12.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.13.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.14.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.15.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.16.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.17.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.19.(5分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.20.(8分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.21.(10分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.22.(10分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(12分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.24.(14分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D.考点:有理数.3、A【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.4、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.5、B【解析】
观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.6、A【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键7、C【解析】
设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x﹣20)(50﹣)=1.故选:C.【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.8、D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.9、D【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.10、C【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=.当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、【解析】
连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.13、2【解析】
将PA+PB转化为PA+PC的值即可求出最小值.【详解】解:E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,B点关于EF的对称点C点,AC即为PA+PB的最小值,∠BCD=,对角线AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案为:.【点睛】求PA+PB的最小值,PA+PB不能直接求,可考虑转化PA+PC的值,从而找出其最小值求解.14、1【解析】
根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.【详解】∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.15、【解析】试题解析:305000用科学记数法表示为:故答案为16、3【解析】∵-3、3,-2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3,-2、1、3、0、4、2,∴众数是3.故答案是:3.17、1.【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴44+x=1解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.三、解答题(共7小题,满分69分)18、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.详解:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得.∵直线与x轴、y轴分别相交于点、,∴点的坐标是,点的坐标是.∵抛物线的顶点是点,∴点的坐标是.∵点是轴上一点,∴设点的坐标是.∵△BCG与△BCD相似,又由题意知,,∴△BCG与△相似有两种可能情况:①如果,那么,解得,∴点的坐标是.②如果,那么,解得,∴点的坐标是.综上所述:符合要求的点有两个,其坐标分别是和.(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.当a=-1时,=;当a=1时,=;∴点的坐标是或.点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.19、(1),(2)【解析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种,∴两人获胜的概率都是.(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,∴两局游戏能确定赢家的概率为:.(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.20、答案见解析【解析】
首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【详解】解:如图所示:.【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..21、(1)证明见解析;(1);(3)1.【解析】
(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.22、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,∴∵y为正整数,∴y为50,51,52,共3中方案;有三种方案:①温馨提示牌50个,垃圾箱50个,②温馨提示牌51个,垃圾箱49个,③温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w随y的增大而减小∴当y=52时,所需资金最少,最少是9800元.【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.23、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训机构股东合同范例
- 电力工程质量监督合同范例
- 演出独家冠名合同范例
- 私人租赁扣件合同范例
- 店铺补充合同范例范例
- 二零二四年度环保型工业机器人采购合同
- 医药公司转让合同范例
- 二零二四年期融资租赁合同(重型设备)
- 2024北京市农作物种子代销合同书
- 2024【园林景观施工合同范本】工程质保金规定
- 蒂莉和高墙1PPT课件
- 我国电子商务中物流配送存在的问题(精)
- Oracle数据库开发规范
- 天气学地面填图与识图
- 《全面质量管理》学习心得(一)
- Drager呼吸机使用
- 入行论(课堂PPT)
- 桥牌基础教程教学方案
- 循环负荷与选粉效率的测定和计算(精)
- 论家庭实验在物理学科中的重要性
- 母子关系证明[共1页][共1页]
评论
0/150
提交评论