版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.点是一次函数图象上一点,若点在第一象限,则的取值范围是().A. B. C. D.2.图中三视图对应的正三棱柱是()A. B. C. D.3.﹣18的倒数是()A.18 B.﹣18 C.- D.4.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A. B.C. D.5.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40° B.36° C.50° D.45°6.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)7.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110° B.120° C.125° D.135°8.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.9.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.7201710.的倒数是()A.﹣ B.2 C.﹣2 D.二、填空题(共7小题,每小题3分,满分21分)11.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.12.分解因式:8x²-8xy+2y²=_________________________.13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.14.关于x的不等式组的整数解有4个,那么a的取值范围()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤415.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)16.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.17.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)19.(5分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.20.(8分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P.21.(10分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.22.(10分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).23.(12分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;看法频数频率赞成5无所谓0.1反对400.8(1)本次调查共调查了人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.24.(14分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:把点代入一次函数得,.∵点在第一象限上,∴,可得,因此,即,故选B.2、A【解析】
由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.3、C【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-18=1,∴﹣18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.4、C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.5、B【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.6、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.7、D【解析】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.8、B【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.9、B【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.10、B【解析】
根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵×1=1∴的倒数是1.故选B.【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.12、1【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.【详解】8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.13、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,∴×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积.14、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a的取值范围.详解:解不等式①,得解不等式②,得原不等式组的解集为∵只有4个整数解,∴整数解为:故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.15、15π−18.【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【详解】S阴影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S阴影部分=12π+3π−18=15π−18.故答案为15π−18.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.16、两点确定一条直线;同圆或等圆中半径相等【解析】
根据尺规作图的方法,两点之间确定一条直线的原理即可解题.【详解】解:∵两点之间确定一条直线,CD和AB都是圆的半径,∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.【点睛】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.17、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题(共7小题,满分69分)18、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.19、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.20、(1见解析;(2).【解析】
(1)根据题意先画出树状图,得出所有可能出现的结果数;
(2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案.【详解】(1)列表得,(2)两次取出的小球上的数字之和为奇数的共有4种,∴P两次取出的小球上数字之和为奇数的概率P=.【点睛】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.【解析】
(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,根据题意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,根据题意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.22、(1)π,2π;(2)(n﹣2)π.【解析】
(1)利用弧长公式和三角形和四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024城市二手房买卖合同(32篇)
- 沪教版九年级化学上册(上海版)全套讲义
- 农业金融服务提升产量潜力
- 高一化学教案:专题第三单元第二课时有机高分子的合成
- 2024高中化学第二章烃和卤代烃2-1苯的结构与性质课时作业含解析新人教版选修5
- 2024高中地理第四章自然环境对人类活动的影响4自然灾害对人类的危害课时作业含解析湘教版必修1
- 2024高中生物第五章生态系统及其稳定性第5节生态系统的稳定性精练含解析新人教版必修3
- 2024高中语文第二课千言万语总关“音”第2节耳听为虚-同音字和同音词练习含解析新人教版选修语言文字应用
- 2024高中语文精读课文一第1课1长安十年作业含解析新人教版选修中外传记蚜
- 2024高考历史一轮复习方案专题六古代中国经济的基本结构与特点专题综合测验含解析人民版
- 伤口愈合的病理生理及湿性愈合理论-课件
- GB/T 24475-2023电梯远程报警系统
- 科技计划项目(课题)验收(结题)经费审计业务约定书
- SIS系统操作规程
- 教师书法培训教案
- 2023年上海航天技术研究院下属航天总厂校园招聘笔试参考题库附带答案详解
- 华东师大版-七年级下册数学-第6章-一元一次方程-教学课件
- 《贵州省市政工程计价定额》(2016版)
- 特种设备安全管理人员(A)考试题库
- (2023)法律基础知识考试题库及答案
- GB/T 27797.4-2013纤维增强塑料试验板制备方法第4部分:预浸料模塑
评论
0/150
提交评论