水泥回转窑的监测技术_第1页
水泥回转窑的监测技术_第2页
水泥回转窑的监测技术_第3页
水泥回转窑的监测技术_第4页
水泥回转窑的监测技术_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

水泥回转窑的监测技术在生产过程中的安全问题一直是厂家关心关注的问题,一旦设备出现故障将会带来不可预测的人力财力物力的损失,而我国水泥工业飞速发展,5000t/d新型干法水泥生产线及其以上规模已经成为主流,机械设备大型化已经成为不争的事实。这些设备的安全高效运行已经成为水泥企业效益的重要决定因素。避免这些设备随机性故障地发生已经成为水泥企业关注的重点。单凭直觉的耳听、眼看、手摸的方式以及定期监测方式、在线检测离线分析监测方式来监测水泥生产设备是否安全已经不能满足现代水泥工业的需要,代替这种方式的是自动在线监测方式,其既可避免设备突发性故障又无需专业人员现场操作。在线监测技术,着重考虑的是预测设备的时间依存性故障和改变设备的维护方式。该技术是在状态监测及故障分析基础上发展起来的,是实现以先进的预知维护取代以时间为基础的预防性维护的关键技术。1.旋转机械状态监测技术的发展1.1发展历程旋转机械是工业上应用最广泛的机械。许多大型旋转机械,如:离心泵、电动机、发动机、发电机、压缩机、汽轮机、轧钢机、回转窑等都是工业企业的关键设备。近二十年来,我国的机械设备也朝着轻型化、大型化、重载化和高度自动化等方向发展,出现了大量的强度、结构、振动、噪声、可靠性,以及材料与工艺等问题,设备损坏事件时有发生如新疆某两支撑回转窑在2008年年初就发生了断裂事故。大型旋转机械状态监测技术研究是国家重点的攻关项目,目的是提高大型旋转机械的产品质量,减少突发性事故,避免重大经济损失。20世纪50年代,各种类型和性能的传感器和测振仪相继研制成功,并开始应用于科学研究和工程实际。20世纪60~70年代,数字电路、电子计算机技术的发展、“信号数字分析处理技术”的形成,推动了振动检测技术在机械设备上的应用。20世纪70~80年代,机械设备的状态监测与故障诊断技术在许多发达国家开始研究。随着电子计算机技术、现代测试技术、信号处理技术信号识别技术与故障诊断技术等现代科学技术发展,机械设备的监测研究跨入系统化的阶段,并把实验室的研究成果逐步推广到核能设备、动力设备以及其它各种大型的成套机械设备中去,进入了蓬勃发展的阶段。20世纪90年代以来,高档微机不断更新且价格迅速下降,适合数字信号处理的计算方法不断优化,使数据处理速度大为提高,为在工业现场直接应用状态监测技术创造了条件。从技术发展过程看,现代监测技术已经从以传感器技术和动态测试技术为基础,以信号处理技术为手段的常规技术阶段发展到人工智能技术为设备监测和故障分析的智能化阶段。1.2发展趋势机械设备运行状态的监测技术,已经从单凭直觉的耳听、眼看、手摸,发展到采用现代测量技术、计算机技术和信号分析技术的先进的监测技术,诸如超声波、声发射、红外测温等,层出不穷。人工智能、专家系统、模糊数学等新兴学科在机械状态监测技术中也找到用武之地。在机械动态信号分析方法和应用技术上,新近的发展有:采用空间域滤波的预处理、采用Vold-Kalman滤波的多轴阶比信号分析技术、适于非平稳信号的基于Wigner—Ville分布分析、小波(wavelet)变换方法、混沌分析方法、智能?传感与检测技术、以及与VXI总线仪器平台相关的技术等。典型的状态监测方式主要有3种:离线定期监测方式、在线检测离线分析的监测方式和自动在线监测方式。最先进的当然是自动在线监测方式。该方式不仅能实现自动在线监测设备的工作状态,及时进行故障预报,而且能实现在线地进行数据处理和分析判断;由于能根据专家经验和有关准则进行智能化的比较和判断,中等文化水平的值班工作人员经过短期培训后就能使用。该方式不需要人为更换测点,不仅不需要专门的测试人员,也不需要专业技术人员参与分析和判断;但是软硬件的研制工作量很大。随着人工智能理论的发展及其在实际中的应用、数据处理软件的大量开发,旋转机械状态在线监测技术正向多目标、多层次监测和网络化方向发展。2.水泥工业旋转设备监测技术举例30年来,水泥工业在世界范围内飞速发展,现代监测技术在水泥工厂得到了广泛应用,尤其是工艺过程的监测和生产质量的控制,如采用激光衍射原理,整合全自动取样和干法分散系统的工业在线粒度分析系统;基于x射线分析原理的在线生料控制系统等。2.1回转窑运行轴线的实时监测系统回转窑是冶金、化工、建材等行业的关键设备,在低速、重载、高温、露天环境下运行,其运行轴线是衡量其机械运行状态的重要指标,由于温度、载荷引起的变形、支承零件磨损以及基础的不均匀沉陷等因素,在运转过程中,回转窑的运行轴线会偏离理论轴线。当运行轴线偏差达±10mm时,支承弯矩和筒体应力约增加3倍,托轮上的压力约增加一倍。实际生产中,回转窑运行轴线偏差一般都超过±10mm,多的可达±40mm。筒体应力增加,会使筒体过早产生疲劳裂纹,甚至因筒体应力过大而引起筒体断裂;托轮压力增大,会导致托轮、滚圈表面出现点蚀、掉渣、鳞片状脱落,楔状掉块,甚至发生托轮压裂、托轮轴扭断、烧瓦等设备事故,对企业造成重大经济损失。因此要保证回转窑的长期正常运转,必须要保证窑运行轴线的准直。回转窑运行轴线的测量可以分冷态测量和动态测量,冷态测量是指在停车状况下,并且是待窑冷却后进行的,然而,当窑启动运转和烘烤升温后,其尺寸会发生变化,因此目前运用较多的回转窑轴线测量系统是采用动态测量。为了检测回转窑的运行轴线偏差,国内外许多学者进行了有益的研究和探索,目前比较成熟的测量系统有:(1).波兰首创了轮带位置测量系统;2).丹麦FLS公司研制了激光轮带测量系统;3).加拿大Hartco公司研究的筒体位置测定系统;(4).德国polysius公司提出的Polscan托轮位置测量系统;(5).中南大学研究提出了一种零位移方向键相测量法;(6).武汉理工大学在上世纪80年代末推出了成本低、操作方便,适合国内回转窑用户使用的“KAS-01回转窑轴线测量系统”并在此之后不断进行改进,现在KAS-3型动态窑轴线检测装置已经研究开发成功,该测量仪由一个直径测量传感器,一个霍尔接收开关,一个水平和垂直方向上的激光位移传感器,一台经纬仪,一台水准仪和一个导轨尺及滑标,一个周长采集器和一台计算机系统组成。该测量仪不但能直接测定筒体或者轮带位置,还能自动测定轮带动态间隙以及筒体表面的温度。2.2回转窑筒体轮廓激光扫描测量系统在窑的长期生产过程中,由于窑筒体变形会引起耐火砖脱落,而窑体衬砖的脱落会引发“红窑”事故,如果不及时处理会烧穿筒体钢板,引发重大事故。因此水泥生产企业迫切需要一种测量装置能够方便及时地发现会发生耐火砖脱落的地方,从而避免损失,提高回转窑的运转率和检修的质量标准。对于回转窑的筒体轮廓测量装置,目前根据所查资料,国外测窑公司有相关测量装置,但其造价昂贵,应用受到一定限制。国内几乎没有研制出相关产品,其测量方法主要就是靠工程师的经验来判断哪里可能会出现问题,此测量方法精度和效率都很低,容易引发事故,造成损失而由我国某名牌高校研制的回转窑筒体轮廓激光扫描测量系统,填补了这一空白。该系统具有以下优点:(1)新型远距离激光位移传感器,光电集成一体化,无需外接控制器,抗异光干扰能力强;(2)本系统可适应高温、多尘、恶劣环境;(3)基于LabVIEW的数据处理,界面直观,友好,既可以查看筒体的截面图也可以查看展开图;(4)该系统为远距离测量,免去了操作人员受高温的影响。但不见其在实时监测方面的报道。旋转机械设备监测技术是以设备及其系统为对象,建立在检测技术、信号处理、识别理论、决策预报及计算机技术等多种现代学科成就基础上的一门新学科,在设备安全运行、合理使用、适时维修、性能评

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论