材料专业外文翻译-导体和半导体材料_第1页
材料专业外文翻译-导体和半导体材料_第2页
材料专业外文翻译-导体和半导体材料_第3页
材料专业外文翻译-导体和半导体材料_第4页
材料专业外文翻译-导体和半导体材料_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中文3550字作者R.Snyder,Member FrederickI.Mopsik国籍:America出处:IEEETRANSACTIONSONINSTRUMENTATIONANDEASUREMENTAPrecisionCapacitanceCellforMeasurementofThinFilmOut-of-PlaneIII:ConductingandSemiconductingMaterialspaperdescribestheconstruction,calibration,anduseofaprecisioncapacitance-basedmetrologyforthemeasurementofthethermalandhygrothermal(swelling)expansionofthinfilms.Itisdemonstratedthatwiththisversionofourcapacitancecell,materialsranginginelectricalpropertiesfrominsulatorstoconductorscanbemeasured.Theresultsofourmeasurementsonp-type<100>-orientedsinglecrystalsiliconarecomparedtotherecommendedstandardreferencevaluesfromtheliteratureandareshowntobeinexcellentagreement.IndexTerms—Capacitancecell,coefficientofthermalexpansion(CTE),guardedelectrode,highsensitivitydisplacement,innerlayerdielectrics,polymers,thinfilms.INTRODUCTIONTHEcoefficientofthermalexpansion(CTE)isakeydesignparameterinmanyapplications.Itisusedforestimatingdimensionaltolerancesandthermalstressmismatches.Thelatterisofgreatimportancetotheelectronicsindustry,wherethermalstressescanleadtodevicefailure.Foraccuratemodelingofthesesystems,reliablevaluesareneededfortheCTE.Traditionally,displacementgaugetechniquessuchasthermomechanicalanalysis(TMA)havebeenutilizedfordeterminingtheCTE.However,standardtestmethodsbasedonthesetechniquesarelimitedtodimensionsgreaterthan100mm[1-2.]Thisisproblematicformaterialswhichcanbeformedonlyasthinlayers(suchascoatingsandcertaininnerlayerdielectrics).Additionally,thereissomequestionastowhethervaluesobtainedonlargersamples(bulkmaterial)arethesameasthoseobtainedforthinfilms,evenwhentheeffectsoflateralconstraintsareincludedinthecalculations.Ithaslongbeenrecognizedthatcapacitance-basedmeasurements,inprinciple,canofferthenecessaryresolutionforthesefilms.Forapairofplane-parallelplatecapacitors,ifthesampleisusedtosetthespacingoftheplatesd whilebeingoutsideofthemeasurementpath,thenforaconstanteffectiveareaoftheplatesA,thecapacitanceina AvacuumC

vac

isgivenbythewell-known

vac

0 (1)dwhere

isthepermittivityoffreespace8.854pFm).Withthesample0 0outsideofthemeasurementpathandonlyairetweentheelectrodes,thevacuumcapacitanceisobtainedromthemeasuredcapacitanceC byC Cvac air

(2)whereair isthedielectricconstantofair.Inthreepreviouspapers,thedesignanddatareductiontechniqueswerepresentedforourthree-terminalcapacitance-basedmetrologyforthinpolymerfilmmeasurements.Thefirstpaper(I)describedtheinitialdesignbasedongold-coatedZerodur.However,severalproblemswereencountered.ItwasdiscoveredthatZerodurdisplaysferroelectricbehavior,withanapparentCurietemperatureof206℃asdeterminedbyfittingwithaCurie–Weisslaw.TherapidchangeinthedielectricconstantoftheZeroduralongwithacouplingfromthecentralcontactthroughtheguardgaptothehighelectrodecreatedanapparentnegativethermalexpansion.Thesecondproblemwiththeinitialdesignwaswiththegoldcoating.Thiscoatinghadthetendencyto―snowplow‖whenscratchesformedinthesurfacecreatingraisedareaswhichwouldresultinshortswhenmeasurementswereperformedonthinsamples.Thesecondproblemwiththegoldwasthatitunderwentmechanicalcreepunderloading.Toresolvetheseproblems,anewelectrodewasdesignedfromfusedquartzcoatedwithnichrome.Agroovefilledwithconductivesilverpaintwasaddedtothebacksideofthebottomelectrodearoundthecentralcontacttointerceptanyfieldlinesbetweenthecentralwirecontactthroughtheguardgaptothehighelectrode.Thenewdesignwasdescribedinthesecondpaper(II)alongwiththermalexpansionmeasurementson<0001>-orientedsinglecrystalsapphire(AlO2 3

)anda14-m thickinnerlayerdielectricmaterialwasrecognizedinIIthatthedatareductionwassimpleaslongastheairfillingthegapbetweenthecapacitorplateswasdry.However,toexpandtheutilityofthecapacitancecelltohygrothermalexpansion(i.e.,swellinginahumidenvironment),thethirdpaper(III)describedthedatareductiontechniquesnecessaryforuseofthecapacitancecellunderhumidconditions.Fig.1.Schematicoftheelectrodes.Notethattheshadedareascorrespondtothenichromecoating.TheresolutionoftheinstrumentwasdeterminedinIIandIII.Fordry,isothermalconditions,thecapacitancecellcanmeasurerelativechangesinthicknessontheorderof107 ,fora0.5-mmthicksample;thiscorrespondstoaresolutionontheorderof51011m.Underdryconditionsinwhichthetemperatureischanged,thereproducibilityofarelativethicknesschange(e.g.,forCTEmeasurement)isontheorderof106

.Finally,underhumidconditions,theultimateresolutionisprimarilyafunctionoftemperature—theactualvaluesofwhicharegiveninIII.InII,adeficiencywasrecognizedinthedesign.Neithersemiconductingorconductingmaterialscouldbeusedasthematerialfortesting.Thiswasespeciallythecaseforsilicon,whichformsaSchottkybarrierwithnichromeandactsasavoltagerectifier.Additionally,becauseofthenatureoftheinterface,the1kHzmeasurementfrequencygeneratesultrasoundwhichresultsintheepoxycontactsbeingshakenloose.WementionedbrieflyinIIthatifthetopelectrodehadaguardringadded,thesamplecouldbeheldatzeropotentialandthiswouldnolongerbeaproblem.Todemonstratethis,weconstructedsuchacapacitancedesignandtestingofwhicharedescribedinthispaper.CAPACITANCECELLDESIGNElectrodeDesignBecausetheconstructionoftheelectrodeswasthoroughlydescribedinII,alessdetaileddescriptionwillbegivenwithemphasisonthechangesinthedesign.Theelectrodeswereconstructed,asbefore,inthefollowingmanner(seeFig.1).10cm2cmcylindricalblanksoffusedquartzweregroundandpolishedtoopticalflatness.Smallholesweredrilledthroughthecenterofeachblanksothat16gaugewirecouldbeinsertedintothem.Thewireswerethencementedwithaconductingepoxy(resistivityof4104cmatAsecondholeandwirewerethenaddedtoeachblankapproximately0.75cmfromtheedgeoftheblanks.Acoatingofnichromewasthenaddedsuchthatitcoveredallsurfacesexceptforasmallareaaroundthebackoftheblanks.Aguardgapwasscribedonboththetopandbottomelectrodessuchthatnomaterialwasraisedwhichcouldcauseashort.Onthebottomelectrode,theguardgapwasscribedona3cmdiameter,andonthetopelectrodeitwasscribedona6cmdiameter.Inthebottomelectrode,a1cmdiameterwellwascutintothebackoftheblankwhichextendedtowithin5mmofthefrontsurface.Thiswellwasthenfilledwithathinconductivesilverpaint.Thepaintconnectedtheouterguardring’smetallizationtotheedgeofthewell.Fig.2.Schematicoftheassembledcapacitancecell.CellAssemblyandCapacitanceMeasurementsTheholderdescribedinIIwasemployedforthemodifiedcell.Inthisversionofthecapacitancecell,bothconductorsofthesemirigidcoaxiallinewereconnectedtothetopelectrode.Thecenterconnectorandbraidwereconnectedtothecenterareaandouterguardring,respectively,byfine30gaugewirecoils.ThecoilswereterminatedwithcenterfemalecontactsfromBNCconnectors,whichcouldbeeasilyconnected/disconnectedtothe16gaugetinnedcopperwirethatwasepoxiedintotheelectrodes.AschematicoftheassembledcellisshowninFig.2.ThefemaleBNCconnectoronthebrassholder(bottomelectrode)wasconnectedtothelowterminal,andthefemaleBNCconnectoronthesemirigidcoaxiallinewasconnectedtothehighterminal.AllconnectionsfromthecapacitancecelltothebridgewereperformedusingTefloninsulatedlownoisecables.Thecapacitancemeasurementswereobtainedusingacommercialautomatedthree-terminalcapacitancebridgewhichusesanoven-stabilizedquartzcapacitorandhasacitedguaranteedrelativeresolutionofbetterthan5107

pF/pFfortherangeofcapacitancesusedwiththiscell2500A1kHzUltra-PrecisionCapacitanceBridgewithOptionE).(Notethatthe―useful‖relativeresolutionissuggestedbythemanufacturertobetypicallyafactorof10ormorebetterthatthecitedrelativeresolution.)Thecapacitancebridge’swasverifiedagainstaNationalInstitutefsdy(NIST)dderdifferencebetweenthetwowaswithinthecapacitor’suncertainty.Allmeasurementswereperformedinatemperature/humiditychamberequippedwitha90℃dewpointairpurge.Thecellwasequilibratedateachtemperatureuntiltherelativefluctuationsinthevacuumcorrectedcapacitancewerenomorethan10710pF/pF.Barometricpressurewasmonitoredusingadigitalpressuresensorwithamanufacturer’sstateduncertaintyof0.1mmHg(13Pa).AsstatedpreviouslyinII,thetemperatureofthecellwascalibratedintermsofthechambertemperaturewitharesistancetemperaturedevice(RTD)mountedtothecellwiththermallyconductingpaste.TheRTDwascalibratedagainstaNISTcertifiedITS-90standardreferencethermometer.AsinII,becauseweareusingadryairpurge,wecanusetheidealgaslawcorrectiontodeterminethemolarvolumeoftheairvtocalculateCair vacvair

RT(3)pWhereT---absolutetemperature;P---pessure;R---gasconstant(R8.314507Lkpamol1K1)[12].Fromthisandthevalueofthemolarpolarizationofdryairobtainedfromtheliterature,P4.31601103mol[13],thedielectricconstantoftheairseparatingtheelectrodesis air P air v11Pairvaieair

aie (4)MEASUREMENTSCellCalibrationTouse(1)tocalculatethethicknessofthesample,theeffectiveareamustbeknown.Todeterminethisvalueasafunctionoftemperature,asinII,wecalibratedtheareaandareaexpansionthroughtheuseofZerodurspacerswiththicknessesofapproximately2.0mm.AsinII,theactualdimensionsoftheZerodurspacersweremeasuredinaballtoplaneconfigurationwithaspeciallydesignedcaliperequippedwithalinearvoltagedisplacementtransducer(LVDT)thathadaresolutionof1104mm.ThecellwasassembledwiththeZerodurspacersusingthesamplepreparationdescribedinII.Measurementswereperformedat0℃,25℃,50℃,75℃,100℃,125C,and150℃.Thecellwascycledthroughthisrangeoftemperaturethreetimes,andthevaluesforC werevacdeterminedforeachrunafteraveragingallthepropertiesoverapproximately1husing10sincrements(atotalof360datapoints)afterequilibriumwasachieved.TheareaAwascalculatedusingtheroomtemperaturethicknessmeasurementsandthevalueforC .Allsubsequentdeterminationsof A,athigherandlowertemperatures,werevaccorrectedfortheslightexpansionandcontractionoftheZerodurasafunctionoftemperature0.05106K1).TheresultsoftheeffectiveradiusoftheelectrodeZerodurasafunctionoftemperatureareplottedinFig.3.Fig.3.EffectiveradiusofthebottomelectrodeasafunctionoftemperatureobtainedbymeasurementsusingZerodurandcorrectingforitsslightexpansion.Fig.4.Relativeexpansionofthe<100>-orientedsinglecrystalsiliconasafunctionoftemperature.Thelineisaplotofthedatafromp-TypeDoped<100>SingleCrystalSiliconTodemonstratetheabilityofthecelltomeasuresiliconandtoprovideaccuratevaluesforthermalexpansion,a0.6-mmthickwaferofsingle-sidepolished,backsidestressrelieved,p-type,<100>-orientedsinglecrystalsiliconwitharesistivityof15 cmwasn(by)oe.hescm2.ewerethencleanedwithultrapuredistilledwaterandethanol.ThecellwasassembledinthesamefashionaswasdescribedinIIandwasplacedinavacuumovenatambienttemperaturesforapproximately1htoeffectivelywringthesample.3.Measurementswereperformedat50℃,75℃,100℃,125℃,andaminimumoftwotimeseach.(Note:Nopointwastakenat0℃duetoproblemswiththecompressorintheenvironmentalchamber.)ThewaferthicknesswasdeterminedusingtheeffectiveradiusversustemperaturedatashowninFig.3.TheresultsofthisanalysisareshowninFig.4alongwiththerecommendedexpansiondataonsiliconobtainedshouldbenotedthatthestandardreferencedatawasdefinedrelativetowhereaswehavemeasured,forconvenience,relativeto25℃.Therefore,thestandardreference,relativeexpansiondatawasshiftedinFig.4byanamountSequaltoST5KwhereT istheCTEattemperatureTtakenfromItisapparentthatthetwosetsofdataagreewithintheexperimentaluncertainty.(Theerrorbarissmalleronthe25℃datapointthanonthehighertemperaturesduetothefactthatmorerepeatrunswereperformed,whichreducedtheuncertaintyforthatdatapoint.)Thisdemonstratesseveralkeyconclusionsregardingthecapacitancecell.First,thelimitationsofthepreviousdesignhavebeeneliminated;siliconandconductingsamplescanbemeasured.Second,theresultsshowthatthecapacitancecellproducesdatathatagreewithliteraturedata.Finally,wehavefurtherdemonstratedtheadvantageofourtechniqueformeasurementofthinsamplesovercommerciallyavailableTMAs.Thevalidityofthisstatementcanbeshownbyconsideringtheresultsofaroundrobinstudy.ThisstudywasperformedamongresearchersatNIST,IBMEndicott,DEC,MicroelectronicsandComputerTechnologyCorporation,NavalSurfaceWarfareDivision,CALCEElectronicProductsandSystemsCenterattheUniversityofMaryland,CornellUniversity,UniversityofTexasatAustin,PurdueUniversity,andtheSemiconductorResearchCorporation(SRC)onthemeasurementoftheCTEofsinglecrystal<100>siliconusingvariouscommercial1.1765-mmthicksampleof<100>singlecrystalsiliconwasusedbyallparticipants.AllreportedvaluesfortheCTEofsiliconwerebelowtheliteraturevaluesforthecorrespondingtemperaturerangesby15%to40%.Oursamplewasapproximatelyhalfasthickastheirsample,yetourvaluesarewithintheexperimentalerror.(Itshouldberecalledthatourtotalprecisionisindependentofactualthicknessandthemainerrorisduetoelectrode/sampleinterfacialeffects.Therefore,hadweusedthethickersample,aswasusedintheroundrobinstudy,theerrorinourresultswouldhavebeenreduced.)Inclosing,itshouldbementionedthatsincewasthe―worstcase‖scenarioforthenewcapacitancecell,itwasdeemedunnecessarytoperformmeasurementsonsinglecrystalsofametallicsamplewhichhaveamuchhigherCTE.However,asinglemeasurementwastakenonthesiliconbyconnectingthebraidsfromthehighandlowterminalstogethershortingthetwoguardringsasifitweredonebyametallicsample.Themeasuredcapacitancewasunchanged;thisthereforedemonstratedthatconductingmaterialscanbemeasured.CONCLUSIONSWehavepresentedthedesignsandimplementationofourcapacitancecellforthemeasurementofconductingandsemiconductingmaterials(aswellasdielectrics).Thethermalexpansiondata,obtainedwiththenewversionofourcapacitancecell,onp-typedopedsinglecrystalsiliconhavedemonstratedboththeabilityofthecelltomeasuresiliconandconductingsamplesandtheabilityofthecelltoprovideaccurateCTEdataonthesetypesofmaterials.Asaresult,itisapparentthatthismetrologycanalsobeappliedtothinpolymerfilmsdepositedonsiliconsubstrates.Furthermore,thiscellcanalsobeusedtostudythehygrothermalexpansion(swellingduetothepresenceofmoisture)byutilizingthedatareductiontechniquesdescribedinIII.Accordingly,thistechniqueshouldbeespeciallyusefultothemicroelectronicspackagingindustryforthecharacterizationofinnerlayerdielectricsaswellascompositestructures.ACKNOWLEDGMENTTheauthorswouldliketothankDr.J.R.EhrsteinintheSemiconductorElectronicsDivisionatNISTforprovidingthesiliconsample.一种精密电容测量薄膜平面扩张的第三部分:导体和半导体材料摘要本文介绍了设计、校准,并且使用精密电容基础计量学来测量薄膜的热、湿热(肿胀)型<100单晶硅结果与参考文献比较,得到了良好证明。电容、热膨胀系数介质、聚合物、薄膜简介热膨胀系数(CET)是许多应用的一个关键设计参数。它是用来估算尺寸和热应力的错位。热应力是十分重要的,它会导致电子行业中的设备故障。系统的精确建模,可靠性的测定都需要热膨胀系数(CET)的核定。传统上的位移测量方法如热应力分析(TMA)可以用来确定热膨胀系数0m的基础上。这些材料局限于只能作为薄层得形成(如涂料和内层介电层)。此外,在更大的样本(散装材料)甚至当薄膜横向约束的影响下所获得的结果是否与理论值一致。人们很早就认识到,在原则上,用过电容测量可以为薄膜提供必要的参数。d,然后两极板相互A,其真空电容量为C

0A

(1)vac d 是真空介电常数8.854pFm),只用来测量的外极板,两极板间只0 0有空气,空电容量C表达式为C vac

Cair

(2)式中

air

是空气介电常数在前三篇论文,描述设计和数据还原技术的发展现状,并提出了三端口电容(I)的初步设计。然而遇介电形成的表面划伤的地区会导致测量误差。第二个关于涂金的问题是它经历载荷下的力学蠕变。极之间的环行线接触到任何领域。第二篇论文介绍了新的设计,单晶蓝宝石(氧化二铝14m为当电容极板间填充的空气是干燥时,数据分析是简单的。然而,电容还需测量薄膜的湿热膨胀(例如,在一个潮湿的环境中的膨胀),论文Ⅲ中描述了电容在高温高湿条件下数据分析的必要技术。1电极原理图。注意阴影部分对应的镍铬合金涂层在论文Ⅱ、Ⅲ中已经确定仪器的分辨率。干燥、等温条件下,电容对于一个10751011m条件下改变温度,相对厚度变化(例如热膨胀系数)大约为106。最后,在潮湿的条件下,最终解决温度的影响——这个将在论文Ⅲ中得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论