版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章时域离散系统的基本网
络结构与变量分析法5.1引言5.2用信号流图表示网络结构5.3无限长脉冲响应基本网络结构5.4有限长脉冲响应基本网络结构15.1引言一般时域离散系统或网络可以用差分方程、单位脉冲响应以及系统函数进行描述。如果系统输入输出服从N阶差分方程其系统函数H(z)为(5.1.1)(5.1.2)2给定一个差分方程,不同的算法有很多种,例如:3
5.2用信号流图表示网络结构
观察(5.1.1)式,数字信号处理中有三种基本算法,即乘法、加法和单位延迟,三种基本运算用流图表示如图5.2.1所示。4图5.2.1三种基本运算的流图表示5和每个节点连接的有输入支路和输出支路,节点变量等于所有输入支路的输出之和。在图5.2.2中,(5.2.1)6
图5.2.2信号流图(a)基本信号流图;(b)非基本信号流图7不同的信号流图代表不同的运算方法,而对于同一个系统函数可以有很多种信号流图相对应。从基本运算考虑,满足以下条件,称为基本信号流图(PrimitiveSignalFlowGraghs)。
(1)信号流图中所有支路都是基本的,即支路增益是常数或者是z-1;
(2)流图环路中必须存在延时支路;
(3)节点和支路的数目是有限的。8例5.2.1求图5.2.2(a)信号流图决定的系统函数H(z)。[解]:将(5.2.1)式进行z变换,得到经过联立求解得到:9FIR网络中一般不存在输出对输入的反馈支路,因此差分方程用下式描述:
其单位脉冲响应h(n)是有限长的,按照(5.2.2)式,h(n)表示为其它n
(5.2.2)10另一类IIR网络结构存在输出对输入的反馈支路,也就是说,信号流图中存在环路。这类网络的单位脉冲响应是无限长的。例如一个简单的一阶IIR网络差分方程为:y(n)=ay(n-1)+x(n)
其单位脉冲响应h(n)=anu(n)。这两类不同的网络结构各有不同的特点,下面分类叙述。11
5.3无限长脉冲响应基本网络结构
1.直接型对N阶差分方程重写如下:12
图5.3.1IIR网络直接型结构13
例5.3.1IIR数字滤波器的系统函数H(z)为画出该滤波器的直接型结构。[解]:由H(z)写出差分方程如下:14图5.3.2例5.3.1图152.级联型在(5.1.2)式表示的系统函数H(z)中,公子分母均为多项式,且多项式的系数一般为实数,现将分子分母多项式分别进行因式分解,得到(5.3.1)
形成一个二阶网络Hj(z);Hj(z)如下式:(5.3.2)16式中,β0j、β1j、β2j、α1j和α2j均为实数。这H(z)就分解成一些一阶或二阶数字网络的级联形式,如下式:
H(z)=H1(z)H2(z)…Hk(z)
(5.3.3)
式中Hi(z)表示一个一阶或二阶的数字网络的系统函数,每个Hi(z)的网络结构均采用前面介绍的直接型网络结构,如图5.3.3所示。17
图5.3.3一阶和二阶直接型网络结构(a)直接型一阶网络结构;(b)直接型二阶网络结构
18例5.3.2设系统函数H(z)如下式:试画出其级联型网络结构。[解]:将H(z)分子分母进行因式分解,得到
193.并联型如果将级联形式的H(z),展开部分分式形式,得到IIR并联型结构。
图5.3.4例5.3.2图20式中,Hi(z)通常为一阶网络和二阶网络,网络系统均为实数。二阶网络的系统函数一般为(5.3.4)
式中,β0i、β1i、α1i和α2i都是实数。如果a2i=0则构成一阶网络。由(5.3.4)式,其输出Y(z)表示为Y(z)=H1(z)X(z)+H2(z)X(z)+…+Hk(z)X(z)21例5.3.3画出例题5.3.2中的H(z)的并联型结构
[解]:将例5.3.2中H(z)展成部分分式形式:
将每一部分用直接型结构实现,其并联型网络结构如图5.3.5所示。22
图5.3.5例5.3.3图
23
5.4有限长脉冲响应基本网络结构
FIR网络结构特点是没有反馈支路,即没有环路,其单位脉冲响应是有限长的。设单位脉冲响应h(n)长度为N,其系统函数H(z)和差分方程为241.直接型按照H(z)或者差分方程直接画出结构图如图5.4.1所示。这种结构称为直接型网络结构或者称为卷积型结构。
图5.4.1FIR直接型网络结构252.级联型将H(z)进行因式分解,并将共轭成对的零点放在一起,形成一个系数为实数的二阶形式,这样级联型网络结构就是由一阶或二阶因子构成的级联结构,其中每一个因式都用直接型实现。例5.4.1设FIR网络系统函数H(z)如下式:H(z)=0.96+2.0z-1+2.8z-2+1.5z-3画出H(z)的直接型结构和级联型结构。26[解]:将H(z)进行因式分解,得到:H(z)=(0.6+0.5z-1)(1.6+2z-1+3z-2)其直接型结构和级联型结构如图5.4.2所示。图5.4.2例5.4.1图273.频率采样结构频率域等间隔采样,相应的时域信号会以采样点数为周期进行周期性延拓,如果在频率域采样点数N大于等于原序列的长度M,则不会引起信号失真,此时原序列的z变换H(z)与频域采样值H(k)满足下面关系式:设FIR滤波器单位脉冲响应h(n)长度为M,系统函数H(z)=ZT[h(n)],(5.4.1)式中H(k)用下式表示:
(5.4.1)
28
要求频率域采样点数N≥M。(5.4.1)式提供了一种称为频率采样的FIR网络结构。请分析IIR滤波网络,为什么不采用频率采样结构。将(5.4.1)式写成下式:(5.4.2)式中:
Hc(z)是一个梳状滤波网络(参考第八章),其零点为29图5.4.3FIR滤波器频率采样结构30(1)在频率采样点ωk,H(ejωk)=H(k),只要调整H(k)(即一阶网络Hk(z)中乘法器的系数H(k)),就可以有效地调整频响特性,使实际调整方便。
(2)只要h(n)长度N相同,对于任何频响形状,其梳状滤波器部分和N一阶网络部分结构完全相同,只是各支路增益H(k)不同。这样,相同部分便于标准化、模块化。31上述频率采样结构亦有两个缺点:(1)系统稳定是靠位于单位圆上的N个零极点对消来保证的。(2)结构中,H(k)和W-kN一般为复数,要求乘法器完成复数乘法运算,这对硬件实现是不方便的。
为了克服上述缺点,对频率采样结构作以下修正。首先将单位圆上的零极点向单位圆内收缩一点,收缩到半径为r的圆上,取r<1且r≈1。此时H(z)为:(5.4.3)32
另外,由DFT的共轭对称性知道,如果h(n)是实数序列,则其离散傅里叶变换H(k)关于N/2点共轭对称,即H(k)=H*(N-k)。而且W-kN=W-(N-k)N,我们将hk(z)和HN-k(z)合并为一个二阶网络,并记为Hk(z),则33显然,二阶网络Hk(z)的系数都为实数,其结构如图5.4.4(a)所示。当N为偶数时,h(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024城市基础设施建设项目特许经营权协议
- 2024年幼儿园教师岗位聘任协议书模板
- 2024专业建设工程项目设计合同范本专业版
- 2024家庭保姆雇佣合同样本
- 2024年先进制造业生产线自动化改造合同
- 2024年度家电行业C型钢部件加工合同
- 2024年废纸回收海运出口协议
- 2024年商场清洁服务合同
- 2024年建筑工程设计与施工一体化合同
- 2024年度智能硬件设备采购与安装合同
- 如何有效应对学习中的困难和挑战
- 医院感染管理培训课件消毒剂的选择与使用
- 平台分销返佣合作协议
- 中国城市行政代码
- 低纤维蛋白原血症的护理查房
- 数学4教材介绍
- 全国大学生职业生涯规划大赛
- 肩关节镜术的健康宣教
- 关于学校安全保卫工作存在的问题及对策
- 2024年广西铝业集团有限公司招聘笔试参考题库附带答案详解
- 2024年西藏开发投资集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论