![第4章半导体器件_第1页](http://file4.renrendoc.com/view/b800b11257ef3c30ab5862f4de4951f2/b800b11257ef3c30ab5862f4de4951f21.gif)
![第4章半导体器件_第2页](http://file4.renrendoc.com/view/b800b11257ef3c30ab5862f4de4951f2/b800b11257ef3c30ab5862f4de4951f22.gif)
![第4章半导体器件_第3页](http://file4.renrendoc.com/view/b800b11257ef3c30ab5862f4de4951f2/b800b11257ef3c30ab5862f4de4951f23.gif)
![第4章半导体器件_第4页](http://file4.renrendoc.com/view/b800b11257ef3c30ab5862f4de4951f2/b800b11257ef3c30ab5862f4de4951f24.gif)
![第4章半导体器件_第5页](http://file4.renrendoc.com/view/b800b11257ef3c30ab5862f4de4951f2/b800b11257ef3c30ab5862f4de4951f25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章半导体器件4.1半导体基础知识4.4绝缘栅场效应管4.3晶体管4.2半导体二极管1.了解半导体二极管、稳压二极管的工作
原理和主要参数
2.了解双极型晶体管、MOS场效应管的工
作原理和主要参数本章要求4.1半导体基础知识4.1.1本征半导体与掺杂半导体导体:自然界中很容易导电的物质称为导体,金属一般都是导体。绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。半导体的导电特性:(可做成温度敏感元件,如热敏电阻)。掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。热敏性:当环境温度升高时,导电能力显著增强1.本征半导体GeSi通过一定的工艺过程,可以将半导体制成晶体。现代电子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个。完全纯净的、具有晶体结构的半导体,称为本征半导体。晶体中原子的排列方式硅单晶中的共价健结构共价健共价键中的两个电子,称为价电子。
Si
Si
Si
Si价电子1.本征半导体
Si
Si
Si
Si价电子
价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。本征半导体的导电机理这一现象称为本征激发。空穴温度愈高,晶体中产生的自由电子便愈多。自由电子在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。本征半导体的导电机理
当半导体两端加上外电压时,在半导体中将出现两部分电流
(1)自由电子作定向运动电子电流
(2)价电子递补空穴空穴电流注意:
(1)本征半导体中载流子数目极少,其导电性能很差;(2)温度愈高,载流子的数目愈多,半导体的导电性能也就愈好。所以,温度对半导体器件性能影响很大。自由电子和空穴都称为载流子自由电子和空穴成对地产生的同时,又不断复合。在一定温度下,载流子的产生和复合达到动态平衡,半导体中载流子便维持一定的数目。2.掺杂半导体掺入五价元素
Si
Si
Si
Sip+多余电子磷原子在常温下即可变为自由电子失去一个电子变为正离子在本征半导体中掺入微量的杂质(某种元素),形成掺杂半导体。
掺杂后自由电子数目大量增加,自由电子导电成为这种半导体的主要导电方式,称为电子半导体或N型半导体。
在N
型半导体中自由电子是多数载流子,空穴是少数载流子。(1)N型半导体
掺杂后空穴数目大量增加,空穴导电成为这种半导体的主要导电方式,称为空穴半导体或P型半导体。掺入三价元素
Si
Si
Si
Si
在P型半导体中空穴是多数载流子,自由电子是少数载流子。B–硼原子接受一个电子变为负离子空穴无论N型或P型半导体都是中性的,对外不显电性。(2)P型半导体1.PN结的形成在同一片半导体基片上,分别制造P型半导体和N型半导体,经过载流子的扩散,在它们的交界面处就形成了PN结。4.1.2PN结------------------------++++++++++++++++++++++++P型半导体------------------------N型半导体++++++++++++++++++++++++多子扩散运动内电场E少子漂移运动扩散的结果是使空间电荷区逐渐加宽。空间电荷区越宽,内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。空间电荷区,也称耗尽层。多子边扩散边复合漂移运动P型半导体------------------------N型半导体++++++++++++++++++++++++扩散运动内电场E所以扩散和漂移这一对相反的运动最终达到平衡,相当于两个区之间没有电荷运动,空间电荷区的厚度固定不变。------------------------++++++++++++++++++++++++空间电荷区N型区P型区1、空间电荷区中没有载流子。2、空间电荷区中内电场阻碍P区中的空穴、N区中的电子(都是多子)向对方运动(扩散运动)。3、P区中的电子和N区中的空穴(都是少子),数量有限,因此由它们形成的电流很小。注意:2.PN结的单向导电性
PN结正向偏置(加正向电压):
P区接电源高电位端、N区接电源低电位端。
PN结反向偏置(加反向电压):
P区接电源高电位端、N区接电源低电位端。名词解释:----++++RUS(1)PN结正向偏置内电场外电场变薄PN+_内电场被削弱,多子的扩散加强能够形成较大的扩散电流。+_空穴自由电子(2)PN
结反向偏置----++++内电场外电场变厚NP+_内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。RUS_+空穴自由电子
1、PN结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。结论:
3、温度越高少子的数目越多,反向电流将随温度增加。
2、PN结加反向电压时,PN结变宽,反向电流较小,反向电阻较大,PN结处于截止状态。阴极引线阳极引线二氧化硅保护层P型硅N型硅(
c
)平面型金属触丝阳极引线N型锗片阴极引线外壳(
a
)点接触型铝合金小球N型硅阳极引线PN结金锑合金底座阴极引线(
b
)面接触型4.2半导体二极管4.2.1二极管的结构示意图阴极阳极(
d
)符号D4.2.2伏安特性UI导通压降:硅管0.6~0.7V,锗管0.2~0.3V。反向击穿电压UBRUBR远远大于UF一般为十几伏到几十伏UF死区电压硅管0.5V,锗管0.2V。PN+-正向偏置PN+-反向偏置反向截止区反向电流很小反向击穿区可控开关4.2.3主要参数(1)最大整流电流IOM二极管长期使用时,允许流过二极管的最大正向平均电流。(2)反向击穿电压UBR二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压URWM一般是UBR的一半或三分之二。(3)反向峰值电流IRM指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性能差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。以上均是二极管的直流参数,二极管的应用是主要利用它的单向导电性,主要应用于整流、限幅、保护等等。选用二极管时还需注意交流参数。(4)微变电阻rDiDuDIDUDQrD是二极管特性曲线上工作点Q附近电压的变化与电流的变化之比:显然,rD是对Q附近的微小变化区域内的电阻。uDiD(5)二极管的极间电容二极管的两极之间有电容,此电容由两部分组成:势垒电容CB和扩散电容CD。势垒电容:势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。扩散电容:为了形成正向电流(扩散电流),注入P区的少子(电子)在P区有浓度差,越靠近PN结浓度越大,即在P区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。这样所产生的电容就是扩散电容CD。P+-NCB在正向和反向偏置时均不能忽略。而反向偏置时,由于载流子数目很少,扩散电容可忽略。PN结高频小信号时的等效电路势垒电容和扩散电容的综合效应rd二极管的微变电阻和极间电容为交流参数4.2.4二极管的单向导电性(1)二极管加正向电压(正向偏置,阳极接正、阴极接负
)时,二极管处于正向导通状态,二极管正向电阻较
小,正向电流较大。(2)二极管加反向电压(反向偏置,阳极接负、阴极接正)时,二极管处于反向截止状态,二极管反向电阻较大,反向电流很小。(3)外加电压大于反向击穿电压二极管被击穿,失去单向导电性。(4)二极管的反向电流受温度的影响,温度愈高反向电流愈大。电路如图,求:UAB
V阳
=-6VV阴=-12VV阳>V阴二极管导通若忽略管压降,二极管可看作短路,UAB=-6V否则,UAB低于-6V一个管压降,为-6.3V或-6.7V例1:
取B点作参考点,断开二极管,分析二极管阳极和阴极的电位。在这里,二极管起钳位作用。
D6V12V3kBAUAB+–4.2.5半导体二极管的简单应用ui>8V,二极管导通,可看作短路uo=8V
ui<8V,二极管截止,可看作开路uo=ui已知:二极管是理想的,试画出uo
波形。8V例2:二极管的用途:
整流、检波、限幅、钳位、开关、元件保护、温度补偿等。ui18V参考点二极管阴极电位为8VD8VRuoui++––例3:二极管半波整流电路二极管:死区电压=0.5V,正向压降0.7V(硅二极管)考虑理想二极管:正向导通时:死区电压=0,正向压降=0,反向截止时:反向电流=0。RLuiuo-++-ARLuiuo-++-uiuottooRLuiuo-++-二极管示例1.稳压二极管UIIZIZmaxUZIZ稳压误差曲线越陡,电压越稳定+-UZDZ工作在反向击穿区4.2.4特殊二极管(1)稳定电压UZ(2)动态电阻rZrZ=UZ/IZ(3)最大耗散功率PZM=UZIZM(4)最大稳定工作电流IZmax
和最小稳定工作电流IZmin主要参数:2.光电二极管反向电流随光照强度的增加而上升IU照度增加3.发光二极管有正向电流流过时,发出一定波长范围的光,目前的发光管可以发出从红外到可见波段的光,它的电特性与一般二极管类似4.3晶体管
V型槽场效应管VMOS(VerticalMetalOxideSemiconductor)电子三极管Triode(电子管的一种)双极型晶体管BJT(BipolarJunctionTransistor)J型场效应管
JunctiongateFET(FieldEffectTransistor)金属氧化物半导体场效应晶体管MOSFET(MetalOxideSemi-ConductorFieldEffectTransistor)双极型晶体管BJT(BipolarJunctionTransistor)4.3.1基本结构NNP基极发射极集电极NPN型BECBECPNP型PPN基极发射极集电极符号:BECIBIEICBECIBIEICNPN型三极管PNP型三极管基区:最薄,掺杂浓度最低发射区:掺杂浓度最高发射结集电结BECNNP基极发射极集电极结构特点集电区:面积最大4.3.2电流分配和放大原理1.三极管放大的外部条件BECNNPEBRBECRC发射结正偏、集电结反偏
PNP发射结正偏
VB<VE集电结反偏VC<VB从电位的角度看:
NPN
发射结正偏VB>VE集电结反偏VC>VB
IB(mA)IC(mA)IE(mA)00.020.040.060.080.10<0.0010.701.502.303.103.95<0.0010.721.542.363.184.051)三电极电流关系IE=IB+IC2)IC
IB
,
IC
IE
3)IC
IB
把基极电流的微小变化能够引起集电极电流较大变化的特性称为晶体管的电流放大作用。
实质:用一个微小电流的变化去控制一个较大电流的变化,是CCCS器件。结论:2.各电极电流关系及电流放大作用3.三极管内部载流子的运动规律BECNNPEBRBECIEIBEICEICBO
基区空穴向发射区的扩散可忽略。发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。进入P区的电子少部分与基区的空穴复合,形成电流IBE,多数扩散到集电结。从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICE。集电结反偏,有少子形成的反向电流ICBO。
3.三极管内部载流子的运动规律IC=ICE+ICBOICEICIBBECNNPEBRBECIEIBEICEICBOIB=IBE-ICBOIBE
ICE与IBE之比称为共发
射极电流放大倍数集-射极穿透电流,温度ICEO(常用公式)若IB=0,则
ICICE04.3.3
特性曲线
即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线?
1)直观地分析管子的工作状态
2)合理地选择偏置电路的参数,设计性能良好的电路
重点讨论应用最广泛的共发射极接法的特性曲线发射极是输入回路、输出回路的公共端共发射极电路输入回路输出回路
测量晶体管特性的实验线路ICEBmAAVUCEUBERBIBECV++––––++1.输入特性特点:非线性死区电压:硅管0.5V,锗管0.1V。正常工作时发射结电压:NPN型硅管
UBE0.6~0.7VPNP型锗管
UBE0.2~0.3VIB(A)UBE(V)204060800.40.8UCE1VO2.输出特性IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O放大区输出特性曲线通常分三个工作区(1)放大区在放大区有IC=IB
,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O(2)截止区IB<0
以下区域为截止区,有IC0
。在截止区发射结处于反向偏置,集电结处于反向偏置,晶体管工作于截止状态。饱和区截止区(3)饱和区
当UCEUBE时,晶体管工作于饱和状态。在饱和区,IBIC,发射结处于正向偏置,集电结也处于正偏。
深度饱和时,硅管UCES0.3V,锗管UCES0.1V。4.3.3特性曲线
即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线?
1)直观地分析管子的工作状态
2)合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线4.3.4主要参数1.
电流放大系数,直流电流放大系数交流电流放大系数当晶体管接成发射极电路时,
表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计电路、选用晶体管的依据。注意:
和
的含义不同,但在特性曲线近于平行等距并且ICE0较小的情况下,两者数值接近。常用晶体管的
值在20~200之间。例:在UCE=6V时,在Q1点IB=40A,IC=1.5mA;
在Q2点IB=60A,IC=2.3mA。在以后的计算中,一般作近似处理:=。IB=020A40A60A80A100A36IC(mA)1234UCE(V)9120Q1Q2在Q1
点,有由Q1和Q2点,得2.集-基极反向截止电流
ICBO
ICBO是由少数载流子的漂移运动所形成的电流,受温度的影响大。
温度ICBOICBOA+–EC3.集-射极反向截止电流(穿透电流)ICEOAICEOIB=0+–
ICEO受温度的影响大。温度ICEO,所以IC也相应增加。三极管的温度特性较差。4.集电极最大允许电流ICM5.集-射极反向击穿电压U(BR)CEO集电极电流IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为ICM。当集—射极之间的电压UCE
超过一定的数值时,三极管就会被击穿。手册上给出的数值是25C、基极开路时的击穿电压U(BR)
CEO。6.集电极最大允许耗散功耗PCM
PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。
PC
PCM=ICUCE
硅管允许结温约为150C,锗管约为7090C。ICUCE=PCMICMU(BR)CEO安全工作区由三个极限参数可画出三极管的安全工作区ICUCEO晶体管参数与温度的关系(1)温度每增加10C,ICBO增大一倍。硅管优于锗管。(2)温度每升高1C,UBE将减小–(2~2.5)mV,
即晶体管具有负温度系数。(3)温度每升高1C,
增加0.5%~1.0%。4.4场效应晶体管场效应晶体管是利用电场效应来控制电流的一种半导体器件,即是电压控制元件。它的输出电流决定于输入电压的大小,基本上不需要信号源提供电流,所以它的输入电阻高,且温度稳定性好。结型场效应管按结构不同场效应管有两种:绝缘栅型场效应管本节仅介绍绝缘栅型场效应管按工作状态可分为:增强型和耗尽型两类,每类又有N沟道和P沟道之分漏极D栅极和其它电极及硅片之间是绝缘的,称绝缘栅型场效应管。金属电极1.N沟道增强型管的结构栅极G源极S4.4.1增强型绝缘栅场效应管SiO2绝缘层P型硅衬底
高掺杂N区GSD符号:
由于栅极是绝缘的,栅极电流几乎为零,输入电阻很高,最高可达1014。漏极D金属电极栅极G源极SSiO2绝缘层P型硅衬底
高掺杂N区由于金属栅极和半导体之间的绝缘层目前常用二氧化硅,故又称金属-氧化物-半导体场效应管,简称MOS场效应管。2.N沟道增强型管的工作原理EGP型硅衬底N+N+GSD+–UGSED+–
由结构图可见,N+型漏区和N+型源区之间被P型衬底隔开,漏极和源极之间是两个背靠背的PN结。
当栅源电压UGS=0时,不管漏极和源极之间所加电压的极性如何,其中总有一个PN结是反向偏置的,反向电阻很高,漏极电流近似为零。SDEGP型硅衬底N+N+GSD+–UGSED+–
当UGS>0时,P型衬底中的电子受到电场力的吸引到达表层,填补空穴形成负离子的耗尽层;N型导电沟道在漏极电源的作用下将产生漏极电流ID,管子导通。当UGS>UGS(th)时,出现N型导电沟道,将D-S连接起来。UGS愈高,导电沟道愈宽。EGP型硅衬底N+N+GSD+–UGSED+–N型导电沟道当UGS
UGS(th)后,场效应管才形成导电沟道,开始导通,若漏–源之间加上一定的电压UDS,则有漏极电流ID产生。在一定的UDS下漏极电流ID的大小与栅源电压UGS有关。所以,场效应管是一种电压控制电流的器件。
在一定的漏–源电压UDS下,使管子由不导通变为导通的临界栅源电压称为开启电压UGS(th)。3.特性曲线有导电沟道转移特性曲线无导电沟道开启电压UGS(th)UDSUGS/ID/mAUDS/VoUGS=1VUGS=2VUGS=3VUGS=4V漏极特性曲线恒流区可变电阻区截止区N型衬底P+P+GSD符号:结构4.P沟道增强型SiO2绝缘层加电压才形成
P型导电沟道
增强型场效应管只有当UGS
UGS(th)时才形成导电沟道。4.4.2耗尽型绝缘栅场效应管GSD符号:
如果MOS管在制造时导电沟道就已形成,称为耗尽型场效应管。1.N沟道耗尽型管SiO2绝缘层中掺有正离子予埋了N型导电沟道
由于耗尽型场效应管预埋了导电沟道,所以在UGS=0时,若漏–源之间加上一定的电压UDS,也会有漏极电流ID产生。
当UGS>0时,使导电沟道变宽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售与收款循环审计课件
- 哪吒电影主题初中班会课之新学期新目标
- 2025至2031年中国旋转头子牵引眼行业投资前景及策略咨询研究报告
- 《盛康源酒业营销》课件
- 2025至2031年中国小辫绳行业投资前景及策略咨询研究报告
- 2025至2030年中国麻辣榨菜丝数据监测研究报告
- 2025至2030年中国防爆六角起子数据监测研究报告
- 2025至2030年中国铜花洒数据监测研究报告
- 《简易呼吸机的应用》课件
- 2010版新生儿窒息复苏课件
- 多旋翼无人机驾驶员执照(CAAC)备考试题库大全-下部分
- 跌倒坠床公休座谈会课件
- 浙教版(2023)六上 第15课 人机对话的实现 教案3
- 管理学专业:管理基础知识试题库(附含答案)
- 医疗器械质量安全风险会商管理制度
- 新疆维吾尔自治区2024届高三下学期三模试题 语文试题
- 《我爱上班》朗诵稿
- Q-GDW 11711-2017 电网运行风险预警管控工作规范
- 幼儿园大班下学期数学期末检测试卷第二套
- 2022年4月自考00277行政管理学试题及答案含解析
- 消防设施安全检查表
评论
0/150
提交评论