2022年重庆地区高三3月份第一次模拟考试数学试卷含解析_第1页
2022年重庆地区高三3月份第一次模拟考试数学试卷含解析_第2页
2022年重庆地区高三3月份第一次模拟考试数学试卷含解析_第3页
2022年重庆地区高三3月份第一次模拟考试数学试卷含解析_第4页
2022年重庆地区高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知倾斜角为的直线与直线垂直,则()A. B. C. D.3.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.4.已知复数z满足,则z的虚部为()A. B.i C.–1 D.15.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有()A. B. C. D.6.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.若函数在处取得极值2,则()A.-3 B.3 C.-2 D.29.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.10.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.411.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.12.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为__________.14.已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_______________.15.设是公差不为0的等差数列的前项和,且,则______.16.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.18.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.19.(12分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.(1)为“﹣数列”中的任意三项,则使得的取法有多少种?(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.20.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.21.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.22.(10分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.2.D【解析】

倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.3.A【解析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.4.C【解析】

利用复数的四则运算可得,即可得答案.【详解】∵,∴,∴,∴复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.5.B【解析】

计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.B【解析】

根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.7.A【解析】依题意有的周期为.而,故应左移.8.A【解析】

对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.9.C【解析】

因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.10.B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。11.B【解析】

设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.12.C【解析】

先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.3000【解析】

根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.【详解】解:全市30000名高中男生的身高(单位:)服从正态分布,且,则,该市身高高于的高中男生人数大约为.故答案为:.【点睛】本题考查正态曲线的对称性的应用,是基础题.14.2【解析】

如图所示,先证明,再利用抛物线的定义和相似得到.【详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.15.18【解析】

先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.16.【解析】

记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)证明见解析(Ⅱ).(Ⅲ)﹣.【解析】

(Ⅰ)由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;(Ⅱ)求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一个法向量,计算,即可得二面角D﹣PE﹣B的余弦值.【详解】(Ⅰ)PC⊥底面ABCD,,如图以点为原点,直线分别为轴,建立空间直角坐标系,则,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;(Ⅲ)设为平面PBE的一个法向量,又则,取,得,,二面角D﹣PE﹣B的余弦值﹣.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.18.(1)(2)【解析】

(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.19.(1)16;(2)115.【解析】

(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;当时求得,再根据换元根据整除的方法求解满足的正整数对即可.【详解】解:(1)三个数乘积为有两种情况:“”,“”,其中“”共有:种,“”共有:种,利用分类计数原理得:为“﹣数列”中的任意三项,则使得的取法有:种.(2)与(1)同理,“”共有种,“”共有种,而在“﹣数列”中任取三项共有种,根据古典概型有:,再根据组合数的计算公式能得到:,时,应满足,,共个,时,应满足,视为常数,可解得,,根据可知,,,,根据可知,,(否则),下设,则由于为正整数知必为正整数,,,化简上式关系式可以知道:,均为偶数,设,则,由于中必存在偶数,只需中存在数为的倍数即可,,.检验:符合题意,共有个,综上所述:共有个数对符合题意.【点睛】本题主要考查了排列组合的基本方法,同时也考查了组合数的运算以及整数的分析方法等,需要根据题意20.(1);(2)见解析.【解析】

(1)根据题意得出关于、、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、、,由,得.,则有,,由,得,由,可得,,,综上,点在定直线上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.21.(1)(2)三个零点【解析】

(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点.另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得,令,则,①当时,递减,则,而,故;②当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有:,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.【点睛】本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论