版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣162.化简的结果是()A. B. C. D.3.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游4.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④5.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A. B.C. D.6.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是()A.0个 B.1个或2个C.0个、1个或2个 D.只有1个7.若,代数式的值是A.0 B. C.2 D.8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)二、填空题(共7小题,每小题3分,满分21分)11.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144° B.84° C.74° D.54°12.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.13.将多项式因式分解的结果是.14.分解因式:x2y﹣4xy+4y=_____.15.已知双曲线经过点(-1,2),那么k的值等于_______.16.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.17.因式分解.三、解答题(共7小题,满分69分)18.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.(5分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)20.(8分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.21.(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.22.(10分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.23.(12分)如图,抛物线交X轴于A、B两点,交Y轴于点C,.(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。24.(14分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.2、D【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.3、C【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.4、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.5、A【解析】
根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20,购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.6、C【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.【详解】∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,故选C.【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.7、D【解析】
由可得,整体代入到原式即可得出答案.【详解】解:,
,
则原式.
故选:D.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.8、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.9、C【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.【详解】解:设的两根为x1,x2,∵由二次函数的图象可知,,.设方程的两根为m,n,则.故选C.【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.10、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.二、填空题(共7小题,每小题3分,满分21分)11、B【解析】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.12、【解析】
画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为,故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13、m(m+n)(m﹣n).【解析】试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).考点:提公因式法与公式法的综合运用.14、y(x-2)2【解析】
先提取公因式y,再根据完全平方公式分解即可得.【详解】原式==,故答案为.15、-1【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.16、(3,2).【解析】
根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.17、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.三、解答题(共7小题,满分69分)18、(1)4元或6元;(2)九折.【解析】
解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+×20)=2240,化简,得x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.答:该店应按原售价的九折出售.19、【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20、(3)证明见解析(3)3或﹣3【解析】
(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k为整数,∴(3k﹣3)3>2,即△>2.∴方程有两个不相等的实数根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的两个实数根都是整数,且k为整数,∴k=3或﹣3.【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.21、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【解析】
(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)△A如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△如图所示,(3,﹣5),(3,﹣1).22、(1)y=1x﹣1(1)1(3)x>1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函数解析式为y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),所以S△AOB=×1×1=1;(3)自变量x的取值范围是x>1.考点:两条直线相交或平行问题23、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民宿设计合同范本
- 代理销售服务协议
- 驾驶员劳动合同书
- 2024【木材买卖(订货)合同】木材买卖合同
- 2024个人借款还款合同范文
- 【语文课件】昼夜书所见
- 海鲜仓储保管合同模板
- 彩页印刷与精细印刷的技术要点考核试卷
- 技术创新合同范例
- 承包建筑房屋合同范例
- 最小应急单元演练预案医院
- (23春)国家开放大学《政府经济学》形考任务1-4参考答案-1700498254.3303273
- 数控技术应用专业人才需求调研报告
- 幼儿园小班《汽车滴滴响》
- Unit6SectionA(4a-4c)课件-人教版英语九年级全一册
- 变应性支气管肺曲霉病诊治专家-共识(2022年修订版)解读
- 自考《商法》00808复习笔记
- 抗日战争的胜利及意义
- 山东酒店标识牌施工方案
- 地下停车场设计方案-文库
- 评委评分表-打分表
评论
0/150
提交评论