版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.估计-1的值在()A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间2.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.113.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为4.用加减法解方程组时,若要求消去,则应()A. B. C. D.5.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠36.不等式组的正整数解的个数是()A.5 B.4 C.3 D.27.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-78.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.9.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体 B.球 C.圆锥 D.圆柱体10.化简:-,结果正确的是()A.1 B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).12.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.2x32y﹣34y13.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。14.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.15.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.16.若关于x的方程的解是正数,则m的取值范围是____________________三、解答题(共8题,共72分)17.(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?18.(8分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?19.(8分)解不等式组并写出它的整数解.20.(8分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.21.(8分)如图,在中,,为边上的中线,于点E.求证:;若,,求线段的长.22.(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.23.(12分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.24.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:∵2<<3,∴1<-1<2,即-1在1到2之间,故选B.考点:估算无理数的大小.2、B【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.3、C【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.4、C【解析】
利用加减消元法消去y即可.【详解】用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.6、C【解析】
先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
则不等式组的解集为-1<x≤3,
所以不等式组的正整数解有1、2、3这3个,
故选C.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出一元一次不等式组的解集.7、C【解析】
根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.8、D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图9、D【解析】
本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.10、B【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.【详解】【点睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).故答案是:.12、0【解析】
根据题意列出方程组,求出方程组的解即可得到结果.【详解】解:根据题意得:,即,解得:,则x+y=﹣1+1=0,故答案为0【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.13、0.1【解析】
根据频率的求法:频率=,即可求解.【详解】解:根据题意,38-45岁组内的教师有8名,
即频数为8,而总数为25;
故这个小组的频率是为=0.1;
故答案为0.1.【点睛】本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=.14、或.【解析】
MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,∴MN是AB的中垂线.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=.在△ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度数为45°或36°.15、1【解析】
根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m的图象经过点P(2,3),∴3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.16、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m>0且4-m-2≠0,解得:m<4且m≠2.三、解答题(共8题,共72分)17、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.18、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.19、不等式组的解集是5<x≤1,整数解是6,1【解析】
先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】∵解①得:x>5,解不等式②得:x≤1,∴不等式组的解集是5<x≤1,∴不等式组的整数解是6,1.【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法20、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】
(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.21、(1)见解析;(2).【解析】
对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:∵,∴.又∵为边上的中线,∴.∵,∴,∴.(2)∵,∴.在中,根据勾股定理,得.由(1)得,∴,即,∴.【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.22、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵,点A(5,2),点B(2,3),
∴
又∵点C在y轴负半轴,点D在第二象限,
∴点C的坐标为(2,-1),点D的坐标为(-1,3).
∵点在反比例函数y=的图象上,
∴
∴反比例函数的表达式为
将A(5,2)、B(2,-1)代入y=kx+b,
,解得:∴一次函数的表达式为.
(1)将代入,整理得:
∵
∴一次函数图象与反比例函数图象无交点.
观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,
∴不等式>kx+b的解集为x<2.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23、1【解析】
通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均为实数,∴x=y=z.∴24、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【详解】(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,∴抛物线解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论