2022-2023学年安徽省阜阳市太和县重点达标名校十校联考最后数学试题含解析_第1页
2022-2023学年安徽省阜阳市太和县重点达标名校十校联考最后数学试题含解析_第2页
2022-2023学年安徽省阜阳市太和县重点达标名校十校联考最后数学试题含解析_第3页
2022-2023学年安徽省阜阳市太和县重点达标名校十校联考最后数学试题含解析_第4页
2022-2023学年安徽省阜阳市太和县重点达标名校十校联考最后数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab2.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.3.下列图形中是轴对称图形但不是中心对称图形的是()A. B. C. D.4.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是()A.44 B.45 C.46 D.475.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90° B.135° C.270° D.315°6.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.7.估计-1的值在()A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间8.如图,,,则的大小是A. B. C. D.9.下列计算正确的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a210.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为()A.42° B.66° C.69° D.77°11.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为(

)A.1个 B.2个 C.3个 D.4个12.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500……击中靶心次数(m)8194492178451……击中靶心频率(mn0.800.950.880.920.890.90……由此表推断这个射手射击1次,击中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=cm.14.因式分解:-3x2+3x=________.15.已知正方形ABCD,AB=1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_____.16.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答:________.17.分解因式:=_______.18.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.20.(6分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.21.(6分)画出二次函数y=(x﹣1)2的图象.22.(8分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.23.(8分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.(1)求证:FD=CD;(2)若AE=8,tan∠E=3424.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.25.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)26.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)27.(12分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.2、D【解析】

根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3、C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、A【解析】

连接正方形的对角线,然后依据正方形的性质进行判断即可.【详解】解:如图所示:∵四边形为正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故选:A.【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.5、C【解析】

根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.6、D【解析】

根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.7、B【解析】试题分析:∵2<<3,∴1<-1<2,即-1在1到2之间,故选B.考点:估算无理数的大小.8、D【解析】

依据,即可得到,再根据,即可得到.【详解】解:如图,,,又,,故选:D.【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.9、D【解析】

根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】-aa-b2a2-3a故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.10、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.11、C【解析】

根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.12、D【解析】

观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14、-3x(x-1)【解析】

原式提取公因式即可得到结果.【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、﹣1<r<.【解析】

首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0<R<1,则-1<-R<0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围.【详解】∵正方形ABCD中,AB=1,

∴AC=,

设圆A的半径为R,

∵点B在圆A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C为圆心的两圆外切,

∴两圆的半径的和为,

∴R+r=,r=-R,

∴-1<r<.

故答案为:-1<r<.【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质.掌握位置关系与数量之间的关系是解题的关键.16、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.17、.【解析】

将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】直接提取公因式即可:.18、1.【解析】

解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2);(3)证明见解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.详解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(负值舍去),∴BC=2a=;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.20、(1)是;(2)见解析;(3)150°.【解析】

(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.【详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:在图3中,由勾股定理得:故答案为(3)解:连接BD.如图1所示:∵△ABE与△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四边形ABCD是以A为等距点的等距四边形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.21、见解析【解析】

首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x…﹣10123…y…41014…如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.22、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1=,令y=x,则,解得:x=±1,∴函数的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y=.∵当x1﹣1x=x时,x3=2,x4=3;当(1m﹣x)1﹣1(1m﹣x)=x时,△=1+8m,当△<2,即m<﹣时,q=x4﹣x3=3;当△≥2,即m≥﹣时,x5=,x6=.①当﹣≤m≤2时,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合题意,舍去);②∵当x5=x4时,m=1,当x6=x3时,m=3;当2<m<1时,x3=2(舍去),x4=3,此时2<x5<x4,x6<2,q=x4﹣x6>3(舍去);当1≤m≤3时,x3=2(舍去),x4=3,此时2<x5<x4,x6>2,q=x4﹣x6<3;当m>3时,x3=2(舍去),x4=3(舍去),此时x5>3,x6<2,q=x5﹣x6>3(舍去);综上所述:m的取值范围为1≤m≤3或m<﹣.点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.23、(1)证明见解析;(2)256【解析】

(1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.【详解】(1)∵AC是⊙O的切线,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下图所示:过点D作DG⊥AE,垂足为G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半径为256【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质和同角的余角相等判断角相等是解本题的关键.24、(1)见详解;(2)x=18;(3)416m2.【解析】

(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【详解】(1)根据题意知,y==-x+;(2)根据题意,得(-x+)x=384,解得x=18或x=32.∵墙的长度为24m,∴x=18.(3)设菜园的面积是S,则S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论