第01章半导体二极管及其应用电路_第1页
第01章半导体二极管及其应用电路_第2页
第01章半导体二极管及其应用电路_第3页
第01章半导体二极管及其应用电路_第4页
第01章半导体二极管及其应用电路_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模拟电子技术基础欢迎学习康少栋343574504@课程性质考试课,3学分,48学时,1~12周*平时成绩(作业,考勤)30%,

期末成绩70%实验0.5学分(公共课部负责),7~15or8-16周硬件:模电、数电、微机原理

软件:OS,网络……目录第一章二极管第二章三极管第三章场效应管第四章功放第五章集成运放第六章反馈第七章集成运放的应用第八章直流稳压电源

第一章半导体二极管及其应用电路半导体基础知识PN结半导体二极管

1.导体:电阻率

<10-4

·cm的物质。如铜、银、铝等金属材料。

2.绝缘体:电阻率

>109·

cm物质。如橡胶、塑料等。

3.半导体:导电性能介于导体和半导体之间的物质。大多数半导体器件所用的主要材料是硅(Si)和锗(Ge)。半导体导电性能是由其原子结构决定的。

§1-1半导体基础知识

半导体的特性本征半导体:纯净的具有晶体结构的鍺、硅、硒下一节上一页下一页返回半导体的导电特性:(可做成温度敏感元件,如热敏电阻)。掺杂性:纯净的半导体中掺入微量某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。

当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。热、光敏性:当环境温度升高时,导电能力显著增强本征半导体和杂质半导体本征半导体现代电子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个(4价元素)。GeSi硅原子锗原子硅和锗最外层轨道上的四个电子称为价电子。硅原子结构图硅原子结构(a)硅的原子结构图最外层电子称价电子

价电子锗原子也是4价元素

4价元素的原子常常用+4电荷的正离子和周围4个价电子表示。+4(b)简化模型硅和锗的晶体结构在硅和锗晶体中,原子按四角形系统组成晶体点阵,每个原子都处在正四面体的中心,而四个其它原子位于四面体的顶点,每个原子与其相临的原子之间形成共价键,共用一对价电子。硅和锗的共价键结构共价键共用电子对+4+4+4+4离子核

本征半导体的共价键结构束缚电子在绝对温度T=0K时,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。本征半导体——化学成分纯净的半导体晶体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。本征半导体和杂质半导体

这一现象称为本征激发,也称热激发。

当温度升高或受到光的照射时,束缚电子能量增高,有的电子可以挣脱原子核的束缚,而参与导电,成为自由电子。自由电子+4+4+4+4+4+4+4+4+4空穴

自由电子产生的同时,在其原来的共价键中就出现了一个空位,称为空穴。

可见本征激发同时产生电子空穴对。外加能量越高(温度越高),产生的电子空穴对越多。与本征激发相反的现象—复合在一定温度下,本征激发和复合同时进行,达到动态平衡。电子空穴对的浓度一定。常温300K时:电子空穴对的浓度硅:锗:自由电子+4+4+4+4+4+4+4+4+4空穴电子空穴对1.当半导体处于热力学温度0K时,半导体中没有自由电子,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。

2.当温度升高或受到光的照射时,价电子能量增高,有极少数的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。3.自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。空穴运动相当于正电荷的运动

这一现象称为本征激发,也称热激发。本征半导体的导电机理+4+4+4+4本征半导体的导电机理自由电子空穴束缚电子

可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合,如图所示。激发复合本征激发和复合的过程本征激发与复合

在半导体中,同时存在着电子导电和空穴导电,这是半导体导电方式的最大特点,也是半导体和金属在导电原理上的本质差别。

当半导体两端加上外电压时,半导体中将出现两部分电流:1、自由电子作定向运动所形成的电子电流,2、应被原子核束缚的价电子(注意,不是自由电子)递补空穴所形成的空穴电流。

自由电子和空穴都成为载流子。

本征半导体中的自由电子和空穴总是成对出现的,同时又不断地复合。在一定温度下,载流子的产生和复合达到动态平衡,于是半导体中的载流子(自由电子和空穴)边维持一定数目。温度越高,载流子数目越多,导电性能也就越好。所以,温度对半导体器件性能的影响很大。本征半导体的导电机理

Si

Si

Si

Sip+多余电子磷原子在常温下即可变为自由电子失去一个电子变为正离子

Si

Si

Si

SiB–硼原子接受一个电子变为负离子空穴杂质半导体:掺入少量杂质的半导体下一节上一页下一页返回多余电子磷原子硅原子多数载流子——自由电子少数载流子——空穴++++++++++++N型半导体施主离子自由电子电子空穴对1.N型半导体

在本征半导体中掺入三价杂质元素,如硼、镓等。空穴硼原子硅原子多数载流子——空穴少数载流子——自由电子------------P型半导体受主离子空穴电子空穴对2.P型半导体杂质半导体的示意图++++++++++++N型半导体多子—电子少子—空穴------------P型半导体多子—空穴少子—电子少子浓度——与温度有关多子浓度——与温度无关总结1、N型半导体中电子是多子,其中大部分是掺杂提供的电子,本征半导体中受激发产生的电子只占少数。N型半导体中空穴是少子,少子的移动也能形成电流,由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。2、P型半导体中空穴是多子,电子是少子。内电场E因多子浓度差形成内电场多子的扩散空间电荷区

阻止多子扩散,促使少子漂移。PN结合空间电荷区多子扩散电流少子漂移电流耗尽层

1.PN结的形成

§1-2PN结少子飘移补充耗尽层失去的多子,耗尽层窄,E多子扩散

又失去多子,耗尽层宽,E内电场E多子扩散电流少子漂移电流耗尽层动态平衡:扩散电流=漂移电流总电流=0势垒UO硅0.5V锗0.1V

因浓度差

多子的扩散运动由杂质离子形成空间电荷区

空间电荷区形成内电场

内电场促使少子漂移

内电场阻止多子扩散

PN结的形成过程当漂移运动与扩散运动达到动态平衡时,空间电荷区便稳定下来,PN结形成。1、空间电荷区中没有载流子,所以电阻率很高。“耗尽层”2、空间电荷区中内电场阻碍P中的空穴、N中的电子(都是多子)向对方运动(扩散运动)。“阻挡层”3、空间电荷区中内电场推动P中的电子和N中的空穴(都是少子)向对方运动(漂移运动)。请注意2.PN结的单向导电性(1)加正向电压(正偏)——电源正极接P区,负极接N区

外电场的方向与内电场方向相反。

外电场削弱内电场→耗尽层变窄→扩散运动>漂移运动→多子扩散形成正向电流IF正向电流(2)加反向电压——电源正极接N区,负极接P区

外电场的方向与内电场方向相同。

外电场加强内电场→耗尽层变宽→漂移运动>扩散运动→少子漂移形成反向电流IRPN

在一定的温度下,由本征激发产生的少子浓度是一定的,故IR基本上与外加反压的大小无关,所以称为反向饱和电流。但IR与温度有关。

PN结加正向电压时,具有较大的正向扩散电流,呈现低电阻,PN结导通;

PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻,PN结截止。

由此可以得出结论:PN结具有单向导电性。3.PN结的伏安特性曲线及表达式

根据理论推导,PN结的伏安特性曲线如图正偏IF(多子扩散)IR(少子漂移)反偏反向饱和电流反向击穿电压反向击穿热击穿——烧坏PN结电击穿——可逆

根据理论分析:u为PN结两端的电压降i为流过PN结的电流IS为反向饱和电流UT=kT/q

,称为温度的电压当量其中k为玻耳兹曼常数

1.38×10-23q

为电子电荷量1.6×10-9T为热力学温度,对于室温(相当T=300K)则有UT=26mV。当u>0u>>UT时当u<0|u|>>|UT

|时4.PN结的电容效应

当外加电压发生变化时,耗尽层的宽度要相应地随之改变,即PN结中存储的电荷量要随之变化,就像电容充放电一样。

(1)势垒电容CB(2)扩散电容CD

当外加正向电压不同时,PN结两侧堆积的少子的数量及浓度梯度也不同,这就相当电容的充放电过程。电容效应在交流信号作用下才会明显表现出来极间电容(结电容)

1.在杂质半导体中多子的数量与

(a.掺杂浓度、b.温度)有关。

2.在杂质半导体中少子的数量与(a.掺杂浓度、b.温度)有关。

3.当温度升高时,少子的数量(a.减少、b.不变、c.增多)。abc

4.在外加电压(电场)的作用下,P型半导体中的电流主要是

,N型半导体中的电流主要是。(a.电子电流、b.空穴电流)ba5、PN结的形成过程、主要特性、主要特性的描述方式

二极管=PN结+管壳+引线NP结构符号阳极+阴极-

§1-3半导体二极管

二极管=一个PN结+管壳+引线NP结构符号阳极+阴极-半导体二极管

的几种常用结构二极管的一般符号

二极管的符号发光二极管

稳压二极管

光电二极管

变容二极管

隧道二极管

温度效应二极管

tº双向击穿二极管

磁敏二极管

体效应二极管

双向二极管

交流开关二极管

二极管按结构分三大类:(1)点接触型二极管PN结面积小,结电容小,用于检波和变频等高频电路。(2)面接触型二极管

PN结面积大,用于工频大电流整流电路。半导体二极管的型号国家标准对半导体器件型号的命名举例如下:2AP9用数字代表同类器件的不同规格。代表器件的类型,P为普通管,Z为整流管,K为开关管。代表器件的材料,A为N型Ge,B为P型G,C为N型Si,D为P型Si。2代表二极管,3代表三极管。半导体二极管图片

半导体二极管的V—A特性曲线

硅:0.5V

锗:

0.1V(1)正向特性导通压降反向饱和电流(2)反向特性死区电压击穿电压UBR实验曲线:uEiVmAuEiVuA锗硅:0.7V锗:0.3V伏安特性(与PN结一样,具有单向导电性)UI死区(开启UON)电压硅管0.5V,锗管0.1V。导通电压降:硅管0.6~0.8V,锗管0.1~0.3V。反向击穿电压U(BR)

死区电压正向反向外电场不足以克服内电场,电流很小外电场不足以克服内电场,电流很小(1)正向特性uEiVmA(2)反向特性uEiVuA特点:非线性PN–+PN+–UI死区电压硅管0.5V,锗管0.1V。导通压降:硅管0.6~0.7V,锗管0.1~0.3V。反向击穿电压U(BR)

死区电压正向反向当外加电压大于死区电压内电场被大大减削弱,电流增加很快。UI死区电压硅管0.5V,锗管0.1V。导通压降:硅管0.6~0.7V,锗管0.2~0.3V。反向击穿电压U(BR)

死区电压反向

由于少子的漂移运动形成很小的反向电流,且U<U(BR)在内,其大小基恒定,称反向饱和电流,其随温度变化很大。

二极管的主要参数

(1)最大整流电流IF——二极管长期连续工作时,允许通过二极管的最大整流电流的平均值。(2)反向击穿电压UBR———

二极管反向电流急剧增加时对应的反向电压值称为反向击穿电压UBR。

(3)反向电流IR——

在室温下,在规定的反向电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。主要参数1)最大整流电流IF二极管长期使用时,允许流过二极管的最大正向平均电流。2)最高反向工作电压UR3)反向电流IR指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要大几十到几百倍。4)最高工作频率fM

在实际应用中,应根据管子所用的场合,按其所承受的最高反向电压、最大正向平均电流、工作频率、环境温度等条件,选择满足要求的二极管。二极管的单向导电性1.二极管加正向电压(正向偏置,阳极接正、阴极接负)时,二极管处于正向导通状态,二极管正向电阻较小,正向电流较大。2.二极管加反向电压(反向偏置,阳极接负、阴极接正)时,二极管处于反向截止状态,二极管反向电阻较大,反向电流很小。

3.外加电压大于反向击穿电压二极管被击穿,失去单向导电性。4.二极管的反向电流受温度的影响,温度愈高反向电流愈大。PN–+PN+–总结

二极管的等效电路

1.

将伏安特性折线化理想二极管近似分析中最常用理想开关导通时UD=0截止时IS=0导通时UD=Uon截止时IS=0导通时i与u成线性关系应根据不同情况选择不同的等效电路!理想模型恒压降模型折线模型Q越高,rd越小。

当二极管在静态基础上有一动态信号作用时,则可将二极管等效为一个电阻,称为动态电阻,也就是微变等效电路。ui=0时直流电源作用小信号作用静态电流2.

微变等效电路(低频交流小信号作用下的等效电路)

二极管电路分析举例定性分析:判断二极管的工作状态导通截止否则,正向管压降硅0.6~0.8V锗0.1~0.3V

分析方法:将二极管断开,分析二极管两端电位的高低或所加电压UD的正负极性。若V阳

>V阴或UD为正(正向偏置),二极管导通若V阳

<V阴或UD为负(反向偏置),二极管截止

若二极管是理想的,正向导通时正向管压降为零,反向截止时二极管相当于断开。电路如图,求:UAB

解:V阳

=-6V,例1:

取B点作参考点,断开二极管,分析二极管阳极和阴极的电位。

在这里,二极管起钳位作用。D6V12V3kBAUAB+–

二极管的钳位作用是指利用二极管正向导通压降相对稳定,且数值较小(有时可近似为零)的特点,来限制电路中某点的电位。V阳>V阴,二极管导通。1、若忽略二极管压降,二极管可看作短路,UAB=-6V。2、若考虑二极管压降,UAB低于-6V一个管压降,为-6.3V或-6.7V。V阴=-12V,两个二极管的阴极接在一起取B点作参考点,断开二极管,分析二极管阳极和阴极的电位。解:1、V1阳

=-6V,V2阳=0V,V1阴

=V2阴=-12VUD1=?V,UD2=?V.二极管都导通?截止?,UAB=?例2:D1承受反向电压为-6V流过D2

的电流为求:UAB

在这里,D2起钳位作用,D1起隔离作用。

BD16V12V3kAD2UAB+–2、∵

UD2>UD1

∴D2优先导通,D1截止。解:理想模型:

,加在二极管阳极的电位高于加在二极管阴极的电位,二极管导通。例3电路如图所示,,。试分别用理想模型和恒压降模型,求解电路的和的值。

,加在二极管阳极的电位高于加在二极管阴极的电位,二极管导通。解:恒压降模型:例4电路如图所示,假设图中的二极管是理想的,试判断二极管是否导通,并求出相应的输出电压。解:①二极管D导通,输出电压。②二极管D截止,输出电压。b.V=5V时,判断出二极管D导通,直流电流为c.V=10V时,1.V=2V、5V、10V时二极管中的直流电流各为多少?a.V=2V时,判断出二极管D导通,直流电流为二极管导通电压UD

为0.6V,UT=26mV二极管基本应用电路二极管在低频和高频以及数字电路均有广泛的应用。以下主要介绍二极管在低频电路的几种应用。二极管几种基本应用整流电路限幅电路电平选择电路(1)工作原理u2的正半周,D导通,A→D→RL→B,uO=u2

。u2的负半周,D截止,承受反向电压,为u2;uO=0。基本应用电路1、整流电路

整流电路是利用二极管的单向导电作用,将交流电变成直流电的电路。半波整流电路改变电路及二极管的接入方式,可得不同波形。基本应用电路全波整流电路

牢记全波整流电路下列2个电路特征:(1)一组全波整流电路中使用两只整流二极管;(2)电源变压器次级线圈必须有中心抽头。⒉二极管限幅电路又称为:“削波电路”,能够把输入电压变化范围加以限制,常用于波形变换和整形。例:二极管构成的限幅电路如图所示,R=1kΩ,UREF=2V,输入信号为ui。

(1)若ui为4V的直流信号,分别采用理想二极管模型、理想二极管串联电压源模型计算电流I和输出电压uo解:(1)采用理想模型分析。

采用理想二极管串联电压源模型分析。(2)如果ui为幅度±4V的交流三角波,波形如图(b)所示,分别采用理想二极管模型和理想二极管串联电压源模型分析电路并画出相应的输出电压波形。解:①采用理想二极管模型分析。波形如图所示。0-4V4Vuit2V2Vuot02.7Vuot0-4V4Vuit2.7V

②采用理想二极管串联电压源模型分析,波形如图所示。(二极管阳极电位)ui<8V,已知:二极管是理想的,试画出uo

波形。8V例:二极管的用途:

整流、检波、限幅、钳位、开关、元件保护、温度补偿等。ui18V参考点二极管阴极电位为8VD8VRuoui++––二极管D截止,可看作开路,uo=ui.(二极管阳极电位)u

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论