版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章假设检验8.1
假设检验的基本原理8.2
一个总体参数的检验正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.0正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC
,标准差为0.36oC
根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点8.1假设检验的基本原理
8.1.1怎样提出假设?
8.1.2怎样做出决策?
8.1.3怎样表述决策结果?第8章假设检验8.1.1怎样提出假设?8.1假设检验的基本原理什么是假设?
(hypothesis)在参数检验中,对总体参数的具体数值所作的陈述就一个总体而言,总体参数包括总体均值、比例、方差等分析之前必需陈述什么是假设检验?
(hypothesistest)先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的统计方法有参数检验和非参数检验逻辑上运用反证法,统计上依据小概率原理小概率是在一次试验中,一个几乎不可能发生的事件发生的概率在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设原假设
(nullhypothesis)又称“0假设”,研究者想收集证据予以反对的假设,用H0表示所表达的含义总是指参数没有变化或变量之间没有关系
最初被假设是成立的,之后根据样本数据确定是否有足够的证据拒绝它总是有符号,或H0:
=某一数值H0:
某一数值H0:
某一数值例如,H0:
10cmnull也称“研究假设”,研究者想收集证据予以支持的假设,用H1或Ha表示所表达的含义是总体参数发生了变化或变量之间有某种关系备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设
总是有符号
,
或H1:
某一数值H1:
某一数值H1:<某一数值备择假设(alternativehypothesis)备择假设没有特定的方向性,并含有符号“”的假设检验,称为双侧检验或双尾检验(two-tailedtest)
备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailedtest)备择假设的方向为“<”,称为左侧检验
备择假设的方向为“>”,称为右侧检验
双侧检验与单侧检验双侧检验与单侧检验
(假设的形式)假设双侧检验单侧检验左侧检验右侧检验原假设H0:m
=m0H0:m
m0H0:m
m0备择假设H1:m
≠m0H1:m
<m0H1:m
>m0以总体均值的检验为例【例】一种零件的生产标准是直径应为10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,确定这台机床生产的零件是否符合标准要求。如果零件的平均直径大于或小于10cm,则表明生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和被择假设提出假设(例题分析)解:研究者想收集证据予以证明的假设应该是“生产过程不正常”。建立的原假设和备择假设为
H0:
10cmH1:
10cm
【例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于500克。从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验证该产品制造商的说明是否属实。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者抽检的意图是倾向于证实这种洗涤剂的平均净含量并不符合说明书中的陈述。建立的原假设和备择假设为
H0:
500H1:
<500【例】一家研究机构估计,某城市中家庭拥有汽车的比例超过30%。为验证这一估计是否正确,该研究机构随机抽取了一个样本进行检验。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者想收集证据予以支持的假设是“该城市中家庭拥有汽车的比例超过30%”。建立的原假设和备择假设为
H0:
30%H1:
30%原假设和备择假设是一个完备事件组,而且相互对立在一项假设检验中,原假设和备择假设必有一个成立,而且只有一个成立先确定备择假设,再确定原假设等号“=”总是放在原假设上因研究目的不同,对同一问题可能提出不同的假设(也可能得出不同的结论)提出假设(结论与建议)8.1.2怎样做出决策?8.1假设检验的基本原理两类错误与显著性水平研究者总是希望能做出正确的决策,但由于决策是建立在样本信息的基础之上,而样本又是随机的,因而就有可能犯错误原假设和备择假设不能同时成立,决策的结果要么拒绝H0,要么不拒绝H0。决策时总是希望当原假设正确时没有拒绝它,当原假设不正确时拒绝它,但实际上很难保证不犯错误第Ⅰ类错误(错误)原假设为正确时拒绝原假设第Ⅰ类错误的概率记为,被称为显著性水平2. 第Ⅱ类错误(错误)原假设为错误时未拒绝原假设第Ⅱ类错误的概率记为(Beta)两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较高,则将犯第Ⅰ类错误的概率定得低些较为合理;反之,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错误的概率定得高些一般来说,发生哪一类错误的后果更为严重,就应该首要控制哪类错误发生的概率。但由于犯第Ι类错误的概率是可以由研究者控制的,因此在假设检验中,人们往往先控制第Ι类错误的发生概率显著性水平
(significantlevel)事先确定的用于拒绝原假设H0时所必须的证据能够容忍的犯第Ⅰ类错误的最大概率(上限值)2. 原假设为真时,拒绝原假设的概率抽样分布的拒绝域3. 表示为(alpha)
常用的值有0.01,0.05,0.104. 由研究者事先确定依据什么做出决策?若假设为H0:=500,H1:<500。样本均值为495,拒绝H0吗?样本均值为502,拒绝H0吗?做出拒绝或不拒绝原假设的依据是什么?传统上,做出决策所依据的是样本统计量,现代检验中人们直接使用由统计量算出的犯第Ⅰ类错误的概率,即所谓的P值根据样本观测结果计算出对原假设和备择假设做出决策某个样本统计量对样本估计量的标准化结果原假设H0为真点估计量的抽样分布检验统计量(teststatistic)
标准化的检验统计量
用统计量决策
(双侧检验)抽样分布H0临界值临界值a/2a/2拒绝H0拒绝H01-置信水平RegionofRejectionRegionofNonrejectionRegionofRejection用统计量决策
(左侧检验)抽样分布H0临界值a拒绝H01-置信水平RegionofRejectionRegionofNonrejection用统计量决策
(右侧检验)抽样分布H0临界值2拒绝H01-置信水平RegionofNonrejectionRegionofRejection统计量决策规则给定显著性水平,查表得出相应的临界值z或z/2,t或t/2将检验统计量的值与水平的临界值进行比较作出决策双侧检验:I统计量I>临界值,拒绝H0左侧检验:统计量<-临界值,拒绝H0右侧检验:统计量>临界值,拒绝H0用P值决策
(P-value)如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率P值告诉我们:如果原假设是正确的话,我们得到得到目前这个样本数据的可能性有多大,如果这个可能性很小,就应该拒绝原假设被称为观察到的(或实测的)显著性水平决策规则:若p值<,拒绝H0双侧检验的P值/
2/
2Z拒绝H0拒绝H00临界值计算出的样本统计量计算出的样本统计量临界值1/2P值1/2P值左侧检验的P值Z拒绝H00临界值计算出的样本统计量1/2P值右侧检验的P值Z拒绝H00计算出的样本统计量临界值1/2P值P值是关于数据的概率P值与原假设的对或错的概率无关它反映的是在某个总体的许多样本中某一类数据出现的经常程度,它是当原假设正确时,得到目前这个样本数据的概率比如,要检验全校学生的平均生活费支出是否等于500元,检验的假设为H0:=500;H0:500。假定抽出一个样本算出的样本均值600元,得到的值为P=0.02,这个0.02是指如果平均生活费支出真的是500元的话,那么,从该总体中抽出一个均值为600的样本的概率仅为0.02。如果你认为这个概率太小了,就可以拒绝原假设,因为如果原假设正确的话,几乎不可能抓到这样的一个样本,既然抓到了,就表明这样的样本不在少数,所以原假设是不对的P值越小,你拒绝原假设的理由就越充分要证明原假设不正确,P值要多小,才能令人信服呢?原假设的可信度又多高?如果H0所代表的假设是人们多年来一直相信的,就需要很强的证据(小的P值)才能说服他们拒绝的结论是什么?如果拒绝H0而肯定H1
,你就需要有很强的证据显示要支持H1。比如,H1代表要花很多钱把产品包装改换成另一种包装,你就要有很强的证据显示新包装一定会增加销售量(因为拒绝H0要花很高的成本)多大的P值合适?有了P值,我们并不需要用5%或1%这类传统的显著性水平。P值提供了更多的信息,它让我们可以选择任意水平来评估结果是否具有统计上的显著性,从而可根据我们的需要来决定是否要拒绝原假设只要你认为这么大的P值就算是显著了,你就可以在这样的P值水平上拒绝原假设传统的显著性水平,如1%、5%、10%等等,已经被人们普遍接受为“拒绝原假设足够证据”的标准,我们大概可以说:10%代表有“一些证据”不利于原假设;5%代表有“适度证据”不利于原假设;1%代表有“很强证据”不利于原假设固定显著性水平是否有意义用P值进行检验比根据统计量检验提供更多的信息统计量检验是我们事先给出的一个显著性水平,以此为标准进行决策,无法知道实际的显著性水平究竟是多少比如,根据统计量进行检验时,只要统计量的值落在拒绝域,我们拒绝原假设得出的结论都是一样的,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际的显著性是不同的。比如,统计量落在临界值附近与落在远离临界值的地方,实际的显著性就有较大差异。而P值给出的是实际算出的显著水平,它告诉我们实际的显著性水平是多少P值决策与统计量的比较拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显著性Z拒绝H00统计量1
P1
值统计量2
P2
值拒绝H0临界值8.1.3怎样表述决策结果?8.1假设检验的基本原理假设检验不能证明原假设正确假设检验的目的主要是收集证据拒绝原假设,而支持你所倾向的备择假设假设检验只提供不利于原假设的证据。因此,当拒绝原假设时,表明样本提供的证据证明它是错误的,当没有拒绝原假设时,我们也没法证明它是正确的,因为假设检验的程序没有提供它正确的证据这与法庭上对被告的定罪类似:先假定被告是无罪的,直到你有足够的证据证明他是有罪的,否则法庭就不能认定被告有罪。当证据不足时,法庭的裁决是“被告无罪”,但这里也没有证明被告就是清白的假设检验不能证明原假设正确假设检验得出的结论都是根据原假设进行阐述的我们要么拒绝原假设,要么不拒绝原假设当不能拒绝原假设时,我们也从来不说“接受原假设”,因为没有证明原假设是真的采用“接受”原假设的说法,则意味着你证明了原假设是正确的没有足够的证据拒绝原假设并不等于你已经“证明”了原假设是真的,它仅仅意为着目前还没有足够的证据拒绝原假设,只表示手头上这个样本提供的证据还不足以拒绝原假设比如,在上例中,如果拒绝原假设,表明样本提供的证据证明该品牌洗涤剂的净含量与说明书所标识的不相符。如果不拒绝原假设,只能说这个样本提供的证据还不足证明净含量不是500克或500克以上,并不等于证明了净含量就超过了500克“不拒绝”的表述方式实际上意味着没有得出明确的结论假设检验不能证明原假设正确“接受”的说法有时会产生误导这种说法似乎暗示着原假设已经被证明是正确的了实事上,H0的真实值我们永远也无法知道,不知道真实值是什么,又怎么能证明它是什么?H0只是对总体真实值的一个假定值,由样本提供的信息也就自然无法证明它是否正确采用“不拒绝”的表述方法更合理一些,因为这种表述意味着样本提供的证据不够强大,因而没有足够的理由拒绝,这不等于已经证明原假设正确假设检验不能证明原假设正确【例】比如原假设为H0:=10,从该总体中抽出一个随机样本,得到x=9.8,在=0.05的水平上,样本提供的证据没有推翻这一假设,我们说“接受”原假设,这意为着样本提供的证据已经证明=10是正确的。如果我们将原假设改为H0:=10.5,同样,在=0.05的水平上,样本提供的证据也没有推翻这一假设,我们又说“接受”原假设。但这两个原假设究竟哪一个是“真实的”呢?假设检验不能证明原假设正确假设检验中通常是先确定显著性水平,这就等于控制了第Ι类错误的概率,但犯第Ⅱ类错误的概率却是不确定的在拒绝H0时,犯第Ⅰ类错误的概率不超过给定的显著性水平,当样本结果显示没有充分理由拒绝原假设时,也难以确切知道第Ⅱ类错误发生的概率采用“不拒绝”而不采用“接受”的表述方式,在多数场合下便避免了错误发生的风险因为“接受”所得结论可靠性将由第Ⅱ类错误的概率来测量,而的控制又相对复杂,有时甚至根本无法知道的值,除非你能确切给出,否则就不宜表述成“接受”原假设假设检验不能证明原假设正确在实际检验中,针对一个具体的问题,将检验结果表述为“不拒绝”原假设,这似乎让人感到无所是从比如,你想购买一批产品,检验的结果没有拒绝原假设,即达到合同规定的标准要求,你是否购买这批产品呢?这时,你可以对检验的结果采取某种默认态度,退一步说,你可以将检验结果表述为“可以接受”原假设,你但这并不等于说你“确实接受”它统计上显著不一定有实际意义当拒绝原假设时,我们称样本结果是统计上显著的(statisticallySignificant)当不拒绝原假设时,我们称样本结果是统计上不显著的在“显著”和“不显著”之间没有清除的界限,只是在P值越来越小时,我们就有越来越强的证据,检验的结果也就越来越显著“显著的”(Significant)一词的意义在这里并不是“重要的”,而是指“非偶然的”一项检验在统计上是“显著的”,意思是指:这样的(样本)结果不是偶然得到的,或者说,不是靠机遇能够得到的如果得到这样的样本概率(P)很小,则拒绝原假设在这么小的概率下竟然得到了这样的一个样本,表明这样的样本经常出现,所以,样本结果是显著的统计上显著不一定有实际意义统计上显著不一定有实际意义在进行决策时,我们只能说P值越小,拒绝原假设的证据就越强,检验的结果也就越显著但P值很小而拒绝原假设时,并不一定意味着检验的结果就有实际意义因为假设检验中所说的“显著”仅仅是“统计意义上的显著”一个在统计上显著的结论在实际中却不见得就很重要,也不意味着就有实际意义因为值与样本的大小密切相关,样本量越大,检验统计量的P值也就越大,P值就越小,就越有可能拒绝原假设统计上显著不一定有实际意义如果你主观上要想拒绝原假设那就一定能拒绝它这类似于我们通常所说的“欲加之罪,何患无词”只要你无限制扩大样本量,几乎总能拒绝原假设当样本量很大时,解释假设检验的结果需要小心在大样本情况下,总能把与假设值的任何细微差别都能查出来,即使这种差别几乎没有任何实际意义在实际检验中,不要刻意追求“统计上的”显著性,也不要把统计上的显著性与实际意义上的显著性混同起来一个在统计上显著的结论在实际中却不见得很重要,也不意为着就有实际意义统计上显著不一定有实际意义
(样本量对检验结果的影响)投掷硬币1000次、4040次和10000次时出现正面样本比例的抽样分布0.50.507这个结果出乎预料吗?n=1000n=4040n=100008.2一个总体参数的检验
8.2.1总体均值的检验
8.2.2总体比例的检验
8.2.3总体方差的检验第8章假设检验8.2.1总体均值的检验
(大样本)8.2一个总体参数的检验总体均值的检验
(大样本)1. 假定条件大样本(n30)使用z检验统计量2
已知:2
未知:总体均值的检验(2
已知)
(例题分析—大样本)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05
,检验该天生产的饮料容量是否符合标准要求?双侧检验总体均值的检验(2
已知)
(例题分析-大样本)H0
:
=255H1
:
255
=
0.05n
=
40临界值(c):检验统计量:决策:结论:
因为Z=1.01<1.96,所以在
=
0.05的显著性水平上不拒绝H0.用Excel中的【NORMSDIST】函数得到的双尾检验P=0.3125>0.05不拒绝H0没有证据表明该天生产的饮料不符合标准要求
z01.96-1.960.025拒绝H0拒绝H00.025总体均值的检验(2
未知)
(例题分析—大样本)【例】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01)
左侧检验50个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.86总体均值的检验
(例题分析—大样本)H0
:
1.35H1
:
<1.35
=
0.01n
=
50临界值(c):检验统计量:因为Z=-2.6061<-2.33,所以在
=
0.01的显著性水平上不拒绝H0.新机床加工的零件尺寸的平均误差与旧机床相比有显著降低决策:结论:-2.33z0拒绝H00.01总体均值的检验
(P值的图示)计算出的样本统计量=2.6061P=0.004579
Z拒绝H00临界值P值总体均值的检验(2
未知)
(例题分析)【例】某一小麦品种的平均产量为5200kg/hm2
。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2
。试检验改良后的新品种产量是否有显著提高?(=0.05)
右侧检验总体均值的检验(2
未知)
(例题分析)H0
:
5200H1
:
>5200
=
0.05n
=
36临界值(c):检验统计量:拒绝H0
(P=0.000088<
=0.05)改良后的新品种产量有显著提高
决策:结论:z0拒绝H00.051.645总体均值的检验(z检验)
(P值的图示)抽样分布P=0.000088
01.645a=0.05拒绝H01-计算出的样本统计量=3.75P值总体均值的检验
(小样本)1. 假定条件总体服从正态分布小样本(n<
30)检验统计量2
已知:2
未知:总体均值的检验
(例题分析—小样本)【例】一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。现对一个配件提供商提供的10个样本进行了检验。假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?10个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.3总体均值的检验
(例题分析—小样本)H0
:
=12H1
:
12
=0.05df=10-1=9临界值(c):检验统计量:不拒绝H0没有证据表明该供货商提供的零件不符合要求
决策:结论:t02.262-2.2620.025拒绝
H0拒绝H00.025一个总体均值的检验
(作出判断)是否已知小样本量n大是否已知否t检验否z检验是z检验
是z检验8.2.2总体成数的检验8.2一个总体参数的检验总体成数检验假定条件总体服从二项分布可用正态分布来近似(大样本)检验的z统计量0为假设的总体成数总体成数的检验
(例题分析)【例】一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。分别取显著性水平
=0.05和=0.01
,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景德镇艺术职业大学《配合物化学》2023-2024学年第一学期期末试卷
- 辽宁大学《嵌入式技术》2023-2024学年第一学期期末试卷
- 江苏海事职业技术学院《口腔科学》2023-2024学年第一学期期末试卷
- 黑龙江工程学院昆仑旅游学院《建筑施工组织》2023-2024学年第一学期期末试卷
- 重庆三峡职业学院《食品仪器分析原子吸收测定水中钙(标准曲线法)》2023-2024学年第一学期期末试卷
- 浙江越秀外国语学院《漆画表现灰料新语言》2023-2024学年第一学期期末试卷
- 浙江海洋大学《GIS气象应用与开发》2023-2024学年第一学期期末试卷
- 中国计量大学《生物信息学入门(双语)》2023-2024学年第一学期期末试卷
- 中央财经大学《工程建筑制图》2023-2024学年第一学期期末试卷
- 小学德育工作的管理制度
- 浙江宁波鄞州区市级名校2025届中考生物全真模拟试卷含解析
- 电子招投标平台搭建与运维服务合同
- IATF16949基础知识培训教材
- 食品研发调研报告范文
- 2024-2030年国家甲级资质:中国干热岩型地热资源融资商业计划书
- 2024-2030年中国MVR蒸汽机械行业竞争格局及投资发展前景分析报告
- 食材配送服务方案投标文件(技术方案)
- 中国慢性阻塞性肺疾病基层诊疗指南(2024年)解读
- 二零二四年度赠与合同:关于艺术品捐赠的赠与合同
- 2023年高考真题-化学(福建卷) 含解析
- 缠绕膜项目实施方案
评论
0/150
提交评论