




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1 MainInthischapter,wefocusonthefollowingconceptsandDefinitionofaContinuumUnitsandBasic ysisTechniques,controlvolumeandEulerianandLagrangianThermodynamicpropertiesofaViscosityandothersecondaryproperties(Newtonian/non-Newtonian;no-slipcondition,turbulence;surfacetension)FlowVisualizationFlowpatterns--Streamlines,streaklines, DefinitionofaFluidisasubstancethatdeforms变形)continuouslyundertheapplicationofashear(tangential)stressnomatterhowsmallorlargetheshearstressmaybe.3Figure1.1Behaviorof(a)solidand(b)fluid,undertheactionofaconstantshear 与时间有4MaindifferencesbetweenthebehaviorofsolidsandfluidsunderanappliedforceForasolidthestrain(应变)ordeformationisafunctionoftheappliedstressandindependentofthetimeoverwhichtheforceisapplied,providingthattheelasticlimitisnotForafluid,thedeformationisdependentonForasolid,iftheelasticlimitisnotexceeded,thedeformationdisappearswhentheforceisremoved;Afluidcontinuestoflowaslongastheforceisappliedandwillnotrecoveritsoriginalformwhentheforceisremoved.5Fluidsunderashearstressmustbeinakindof Howtokeepthefluidatrest (FWFluidtakesshapeofContinuum连续介质概Allfluidsarecomposedofmoleculesinconstantmotion.Howeverinmostengineeringapplicationsweareinterestedintheaverageormacroscopiceffectsthatweordinarilyperceiveandmeasure.Wethustreatafluidasaninfini ydivisiblesubstance,acontinuum,thusfrommacropointofview,wedonotneedtoconcernwiththebehaviorofindividualmolecules.Thisistheso-calledcontinuumconceptinclassicalfluidmechanics.在经典流体力学中,只考虑分子平均或作用,不考虑单独分子的性能 ValidityofcontinuumTheconceptofacontinuumisthebasisofclassicalfluidmechanics.Thecontinuumassumptionisvalidintreatingthebehavioroffluidsundernormalconditions.Itbreaksdownwheneverthemeanfreepathofthemolecules(
7 esthesameorderasthesmallestsignificantcharacteristicdimension(特征长度)oftheproblem.Forrarefiedgasflow稀薄气体(e.g.,asencounteredinflightsintotheupperreachesoftheatmosphere);micro-scalechannelflows(inMEMSandevenNEMS,etc.8HowtorepresentflowpropertyatapointinaForexample,thedensityatpointWhenVisshrank(收缩)toaverysmallsize,itthenwillrepresentafluidparticle/element,andthisvolumeistermedelementalvolume. CCVV Inacontinuum,volumeofafluidparticleorelementsatisfy(连续介质中的流体质点、流体微团满足下Largeenoughinmicroscope(微观足够大Smallenoughinmacroscope(宏观足够小),i.e.109
ofairatstandardconditions y
SignificanceofcontinuumAsaconsequenceofthecontinuumassumption,eachfluidpropertyisassumedtohaveadefinitevalueateverypointinspace.Thereforefluidpropertiessuchasdensity,temperature,velocity,andsoon,areconsideredtobecontinuousfunctionsofpositionandtime,andthisleadtoafield*descriptionoffluidflow.InparticularthevelocityfieldisgivenbyrrNOTE:稀薄微小空间(尺度)“Continuumconcept”breaksdownwheneverthemeanfreepathofthemolecules(分子自由行程) esthesamemagnitudeorder(相同数量级)asthesmallestsignificantcharacteristicdimension(特征长度)oftheproblem.若连续介质不适用,应如何处理呢?Dimensionand单位与量Dimensionsarepropertiesthatcanbemeasured,e.g.length,velocity,area,volume,accelerationetc.可以测量的性质叫Unitsarethestandardelementsweuse (量化thesedimensionssuchasameter,afoot用来量化量纲的标Itisnotedthat“dimension’isnotapropertyoftheindividualunits,butit lswhattheunitrepresentsAllmeasurable tiescanbedividedintotwogroups: tiesandsecondary PrimaryunitprimarydimensionMLTMMSITL ty–orsecondarydimensionorsecondary ThePrincipleofDimensional量纲一致性additivemustbedimensionallyhomogeneousandsimultaneouslybeconsistentinunitsDifferentsystemsandconversionBritishGravitationalunitsChineseEngineeringUnits(中国工程单位).metricSIsystem公制或国际单位制TheSISEEpage850–AppendixC:Conversion1.41.4Basicysiscontrolvolumeandsystem,EulerianLagrangianBasic ysisTherearethreedifferentwaystotackleafluidflow ysis(积分分析lookingatgrosseffectoffluidparticlesincontrolvolumeorsystem–ToobtainsomeintegralDifferentialysis(微分分析)lookingatinfinitesimal(极微小的)systemorcontrolvolume(localindividualbehaviour)–Toobtaindifferentialequations ysis(量纲分析)isusedinexperimentalstudyoffluidflowtorearrangeflowparametersandobtaindimensionlessparametergroups,suchasRe,Ma,etc.throughwhichwecannotobtainanexactflowsolution.ControlvolumeandTheabovementionedflow ysiscanbecarriedoutforafluidsystemoracontrolvolume.Asystemisdefinedasafixed tyandfixedidentityofmass;thesystemboundariesseparatethesystemfromthesurroundings.Theboundariesofthesystemmaybefixedormovable,butthereisnomasstransferacrossthesystemboundaries.Piston-cylinderAfluidsystemfixedmassandfixedidentityofItisnotedalltheequationsareestablishedforafixedmassintegrity.DifficultyarisesfortreatingafluidInfact,weveryoftenconcernedwiththeflowoffluidsthroughadevice,suchascompressor,turbines,pipelines,nozzles.Inthesecases,itisdifficulttofocusourattentiononafixedidentifiable tyofmass.Itismuchmoreconvenientto yzingavolumeinspacethroughwhichthefluidflows.Controlvolumeisanarbitraryvolumeinspace,chosenby yst,withopenboundariesthroughwhichmass,momentum,andenergyareallowedtocross.ItsboundaryiscalledcontrolPPipFlowFluidflowthroughaItisnotedThecontrolvolumemaybefixed,movingordeformable(固定、运动、变形).Controlvolumecanbebothfiniteand ysisisusedforafinitevolume,whiledifferential usedforaninfinitesimalvolumeCanweusetheconservationequations(suchasenergyconservationequation,momentumconservationequation)introducedinpreviouscoursesdirectlytoacontrolvolume?Itisnotedthatallconservationequationsthatyoulearnedinpreviouscoursesareestablishedforasystem(afixedmassintegrity), suchasNewton’slaw,lawsofthermodynamics,etc.;theseequationscannotbedirectlyusedforacontrolvolume.Sincethecontrolvolumedoesnothaveafixed tyandidentityofmass!3Lagrangian&EulerTherearetwodistinctwaystodescribefluidflow(toestablishtheequationsofmotion),andtheyareLarangianandEulerianmethod.Lagrangianapproachwedealwithasystemandapplybasicequationstoa tyandidentityofmass(namelysystemasdefinedabove),forinstance,theapplicationofNewton’ssecondlawtoaparticleoffixedmass.SuchaapproachisoftentermedLagrangianapproach.Indifferential ysis,Lagrangianapproachfocusesona tyofmass,andtracethehistoryofpropertyforindividualfluidparticles(orelementalbodyofmassFrvtr(rr)rrrardd2rdrr(a,b,c)v.r(a,b,rrV a,andrrrSincea,V a,andrrr
ItisnotedthatinLagrangianframe(在日框架下),flowparametersareexpressedasrV(a,b,c,t)P(a,b,c,t)(a,b,c,t)Wherea,b,&careconstants,andtheyrepresentinitialposition初始位置ofthefluidApplicationofLagrangianLagrangianapproachspecifieshistoryofpropertiesforindividualfluidparticles.Forexample,itisusedtotrackdiscreteparticlesanddroplets(离散粒子和液滴)inacontinuousfluid.Lagrangianapproachtracesallparticles(e.g.1,2,and3…..N)atinitialandsuccessivetimeinstant(a1,b1,c1,
,
,
,particle particle3
(a3,b3,c3,ty
t2Eulerapproach-focusesonflowpropertiesatagivenpointinspaceoragivenfinitecontrolvolume(throughwhichdifferentfluidparticlesmaypassatdifferenttimeinstants.)Itisnotedthatinanintegral ysisweshouldconsiderafinitecontrolvolumewithfixedboundary,whileinadifferential ysisweshouldconsideraninfinitesimalcontrolvolumeofagivenpointinspace.EulerEulerapproachfordifferential ysisfocusingonflowpropertyatanarbitrarypoint(ofaninfinitesimalcontrolvolume,微小的容积).ItisnotedthatinEulerframe(在框架下vv(x,y,z,tp(x,y,z,t(x,y,z,trTheapproachisbasedonfieldIngeneral,velocityisavectorfunctionofpositionandthushasthreecomponents,u,v,andw,andwritten 3Eulerapproachforintegral ysisfocusingonafinitecontrolvolume(有限大容积)withfixed3PPipControlFlowFluidflowthroughaThermodynamicpropertiesofaVelocityarethemostimportantfluidproperty,anditinteractscloselywiththethermodynamicpropertiesofthefluid.Thefollowing9tiesarethermodynamicpropertiesdeterminedbythermodynamicconditionorstate.Basic(intensive) OtherintensivePressureDensityTransportCoefficientofviscosity
Enthalpyh=ˆp/Entropy
weightVgg limmVV'(g)liquidV(V1000(g)gasV( 1.205Specificgravity(SG,)比引力或比(waterat(airat20°C&Internal,PotentialandKineticInternalmolecularbondingPotential
molecularactivityKineticfludmechanicssumofthree eˆ1/2V2 Wedefinezasupward,
gr
andweeˆ1/2V2Viscosityandothersecondary tiessuchaspressure,temperature,anddensityareprimarythermodynamicproperties(variables).Certainsecondaryproperties(variables)alsocharacterizespecificfluidmechanicalbehavior.Viscosityisthemostimportantsecondaryproperty,whichrelatesthelocalstressestothestrainrateofthemovingfluidelement.Itisa tativemeasureofafluid's toflow,inparticular,itdeterminesthefluidstrainrategeneratedbyagivenappliedshearViscosityisthepropertyofafluid,duetocohesionandinteractionbetweenmolecules,whichoffers sheardeformation.粘DifferentfluidsdeformatdifferentratesunderthesameshearTherelationshipamongstress,strainordeformationrate,viscosityisdifferentfordifferentDeformationofa 平板作用于流体上的切应力 A0 )流体的变形率(deformation)
limt0MM'之间的距 l lu故t 流体的变形率(deformationdd
Evenamongfluids,therecarewidedifferencesinthebehaviorunderstress.Accordingtotherelationbetweentheappliedshearstress,andtherateofdeformation,fluidsareclassifiedintoNewtonianandnon-newtonian流体与 NewtonianFluidsinwhichappliedshearstressisdirectlyproportionalto(正比于)rateofdeformationaretermedNewtonianfluids.
SuchapropertyoffluidsisaconstantforallNewtonianfluids,termeddynamicviscosity(动力粘性)/orabsoluteviscosity Newton’slawofviscosity(内摩擦定律 Dynamicviscosityorabsolute
m2//Non-Newtonianfluids(非流体non-NewtonianfluidsdonotsatisfyNewton’slawofviscosity. Fornon-Newtonianfluids,theviscositycommonlyisnotaconstant. Figure1.9Rheologicalbehaviorofvariousmaterials:(a)Stressversusstrainrate--Comparisonsofnewtonianand newtonianfluids;(b)Effectoftimeonappliedstress--Tomaintainaconstantstrainratewithtime,thestressrequiredisdifferentforcommonfluids,rehopecticfluids,andthixotropicfluidsViscosityvarieswith
粘性随压力的变TheviscosityofNewtonianfluidsisatruethermodynamicpropertyandvarieswithtemperatureandGenerallyspeaking,theviscosityofafluidincreasesonlyweaklywithpressure.Forinstance,increasingpfrom1atmto50atmwillincreaseµofaironly10%.Itiscustomaryinmostengineeringworktoneglecttheinfluenceofpressurevariationonviscosityoffluids.Viscositymainlyvarieswith粘性随温度变Viscosityofgasesincreaseswithtemperature,whereasforliquids,viscositydecreaseswithincreasingThereasonisthatviscosityresultsfromthecombinedeffectofinteractionandcohesionofmolecules,andtheyplaydifferentrolesingasesandliquids.Forgases--Themoleculesofgasesareonlyweaklykeptinpositionbymolecularcohesion(astheyaresofarapart).Asadjacentlayersmovebyeachotherthereisacontinuousexchangeofmomentum.Moleculesofaslowerlayermovetofasterlayerscausingdrag,whilemoleculesmovingtheotherwayexertanaccelerationforce.气体聚合力小,分子动量交换强,间动量交换Iftemperatureofagasincreasesthemomentumexchangebetweenlayerswillincreasethusincreasingviscosity.Forliquids--Thoughthereissomemolecularinteraction,butasthemoleculesaresomuchcloserthaningases,thecohesiveforceholdthemoleculesinplacemuchmorerigidly.Thiscohesionplaysanimportantroleintheviscosityofliquids.Increasingthetemperatureofaliquidreducesthecohesiveforcesandthen todeformationdecreases,thusdecreasingviscosity.Deceasingthetemperatureofaliquidincreasecohesiveforcesthusincreasingviscosity.NotionsrelatedtoNo-slip
i.e.atsolidboundary,
Turbulent
Withoutviscosity,therewouldnotbeanyturbulentflowatall!Figure1.15:VelocityNo-slipconditioninwaterflowpastathinfixedLaminarSurfacetension表面张Surfacetensionisgeneratedattheinterface界面AmoleculeIintheinteriorofaliquidisunderattractiveforces(i.e.cohesion)inalldirectionsandthevectorsumoftheseforcesiszero.ButamoleculeSatthesurfaceofaliquidisactedbyanetinwardcohesiveforcethatisperpendiculartothesurface.Hencetheinterfacerequiresworktomovemoleculestothesurfaceagainstthisopposing(cohesion)force,andsurfacemoleculeshavemoreenergythaninteriorones
ofliquidsandSurfacetensionofaliquidistheworkthatmustbedonetobringenoughmoleculesfrominsidetheliquidtothesurfacetoformoneunitareaofthatsurface(J/m2=N/m).SurfacetensionmustsatisfyminimumenergySurfacetensionleadingtocapillarity毛细管现象Surfacetensioncausesdropsofliquidtotendtotakeasphericalshape.Thisisresponsibleforcapillaryactionandcausesaliquidtoriseordropinafinetubewhenitslowerendisinvertedinaliquid.ExampleExampleFigureRiseorLiquidsriseintubesiftheyadhesionofsolidsurface(粘附力)>cohesion(聚合力)andfallintubesifcohesion>adhesionNote:Whenuseacolumnofliquidtomeasurepressure,oneshouldremembertocorrecthis/herreadingerrorsresultedfromcapillarity!!FlowpatternsStreamlines,streaklines,andpathlinesForFlowVisualizationFlowpatternscanbevisualizedindifferentways,wecansketchesandphotographstodescribetheflowqualitativelyandFourbasictypesofline'spatternsareusedtovisualizethe1Pathline(迹线isatra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年离心铸造裂解管项目可行性研究报告
- 2025年中国润滑油包装瓶市场调查研究报告
- 2025年中国果味瓜子市场调查研究报告
- 2025年汽车用CD存放包项目可行性研究报告
- 2025年烷基单乙醇酰胺及其醚衍生物项目规划申请报告
- 科技企业如何制定高效应急响应计划
- 2025至2030年高剪切分散混合机项目投资价值分析报告
- 科技企业品牌塑造中的舆情分析
- 2025年高炉均压放散减压阀组消声器项目立项申请报告模范
- 进口商品采购合同范本
- 三年级数学-解决问题策略(苏教版)
- 可下载打印的公司章程
- 不吃路边摊精品课件
- 《网络服务器搭建、配置与管理-Linux(RHEL8、CentOS8)(微课版)(第4版)》全册电子教案
- 心理评估与诊断简介
- 无痛病房管理课件
- 让孩子变成学习的天使——由《第56号教室的奇迹》读书分享
- 球泡检验标准
- 公安笔录模板之询问嫌疑人(书面传唤治安案件)
- 振动分析基础讲义1
- 记账凭证汇总表excel模板
评论
0/150
提交评论