版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数复习(2)马红萍二次函数与一元二次方程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0选择抛物线y=x2-4x+3的对称轴是_____________.A直线x=1B直线x=-1C直线x=2D直线x=-2(2)抛物线y=3x2-1的________________A开口向上,有最高点B开口向上,有最低点
C开口向下,有最高点D开口向下,有最低点(3)若y=ax2+bx+c(a0)与轴交于点A(2,0),B(4,0),
则对称轴是_______A直线x=2B直线x=4C直线x=3D直线x=-3(4)若y=ax2+bx+c(a0)与轴交于点A(2,m),B(4,m),
则对称轴是_______A直线x=3B直线x=4C直线x=-3D直线x=2cBCA2、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)
(a≠0)求抛物线解析式的三种方法练习根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(-2,0),(3,0),且最高点的纵坐标是3。
例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x综合创新:1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1
又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)
所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5
2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0)(2)新抛物线向右平移5个单位,
再向上平移4个单位即得原抛物线答案:y=-x2+6x-5练习1、已知抛物线y=ax2+bx-1的对称轴是x=1,最高点在直线y=2x+4上。
(1)求此抛物线的顶点坐标.(2)求抛物线解析式.(3)求抛物线与直线的交点坐标.解:∵二次函数的对称轴是x=1∴图象的顶点横坐标为1又∵图象的最高点在直线y=2x+4上∴当x=1时,y=6∴顶点坐标为(1,6)
例2、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,∠ACB=90°,求抛物线解析式。解:∵点A在正半轴,点B在负半轴OA=4,∴点A(4,0)OB=1,∴点B(-1,0)∵∠ACB=90°OC⊥AB∴∠CAO=∠BCO∠CAO+∠OCA=90,∠OCA+∠BCO=90∴∠BOC=∠COA,∴△BOC∽△COA∴OB/OC=OC/OA∴OC=2,点C(0,-2)由题意可设y=a(x+1)(x-4)得:a(0+1)(0-4)=-2∴a=0.5∴y=0.5(x+1)(x-4)ABxyOC练习、已知二次函数y=ax2-5x+c的图象如图。(1)、当x为何值时,y随x的增大而增大;(2)、当x为何值时,y<0。yOx(3)、求它的解析式和顶点坐标;2.50xyh
ABD
河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的表达式为y=-x2,
当水位线在AB位置时,水面宽AB=30米,这时水面离桥顶的高度h是()
A、5米B、6米;C、8米;D、9米125解:当x=15时,Y=-1/25×152=-9问题1:问题4:某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?分析:利润=(每件商品所获利润)×
(销售件数)
设每个涨价x元,那么(3)销售量可以表示为(1)销售价可以表示为(50+x)元(x≥0,且为整数)(500-10x)
个(2)一个商品所获利润可以表示为(50+x-40)元(4)共获利润可以表示为(50+x-40)(500-10x)元答:定价为70元/个,利润最高为9000元.
解:y=(50+x-40)(500-10x)
=-10x2+400x+5000(0≤x≤50,且为整数)
=-10(x-20)2+9000问题4:某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?问题5:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。ABCD解:(1)∵AB为x米、篱笆长为24米∴花圃另一边为(24-4x)米
(3)∵墙的可用长度为8米
(2)当x=时,S最大值==36(平方米)∴S=x(24-4x)=-4x2+24x(0<x<6)∴0<24-4x≤84≤x<6∴当x=4m时,S最大值=32平方米小试牛刀
如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔPBQ的面积最大?最大面积是多少?ABCPQ解:根据题意,设经过x秒后ΔPBQ的面积y最大,则:AP=2xcmPB=(8-2x
)cm
QB=xcm则y=1/2x(8-2x)=-x2+4x=-(x2-4x+4
-4)=-(x-2)2
+4所以,当P、Q同时运动2秒后ΔPBQ的面积y最大最大面积是4cm2(0<x<4)ABCPQ如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔPBQ的面积最大?最大面积是多少?在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?DCABGHFE106再显身手解:设花园的面积为y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44785-2024电子营业执照数据规范
- GB/T 34430.5-2024船舶与海上技术保护涂层和检查方法第5部分:涂层破损的评估方法
- 《普通物理实验2》课程教学大纲
- 2024年出售杀鸡厂屠宰场合同范本
- 2024年代理记账合同范本可修改
- 江苏省无锡市江阴市六校2024-2025学年高一上学期11月期中联考试题 生物(含答案)
- 爱国敬业团课课件
- 2024至2030年中国挺柔西服行业投资前景及策略咨询研究报告
- 2024至2030年中国防爆蓄电池式电机车数据监测研究报告
- 2024年营养液用输液器项目评估分析报告
- SMT电子物料损耗率标准 贴片物料损耗标准
- 王阳明心学课件
- 马克思主义基本原理概论(湖南师范大学)智慧树知到答案章节测试2023年
- 环境影响评价智慧树知到答案章节测试2023年桂林电子科技大学
- 2023年江苏小高考历史试卷含答案1
- 2022年全国统一高考日语真题试卷及答案
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- GB/T 28655-2012业氟化氢铵
- 氧气(MSDS)安全技术说明书
- 第一章膳食调查与评价
- GB 5606.3-2005卷烟第3部分:包装、卷制技术要求及贮运
评论
0/150
提交评论