版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7节函数的图象最新考纲1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.知
识
梳
理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换f(x)-k(2)对称变换-f(x)f(-x)-f(-x)logax(3)伸缩变换|f(x)|f(|x|)[微点提醒]记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.基
础
自
测1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(
)(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(
)(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.(
)(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.(
)解析
(1)y=f(-x)的图象向左平移1个单位得到y=f(-1-x),故(1)错.(2)两种说法有本质不同,前者为函数的图象自身关于y轴对称,后者是两个函数的图象关于y轴对称,故(2)错.(3)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两函数图象不同,故(3)错.答案
(1)×
(2)×
(3)×
(4)√解析其图象是由y=x2图象中x<0的部分和y=x-1图象中x≥0的部分组成.答案
C3.(必修1P23T2改编)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是(
)解析小明匀速运动时,所得图象为一条线段,且距离学校越来越近,排除A;因交通堵塞停留了一段时间,与学校的距离不变,排除D;后来为了赶时间加快速度行驶,排除B.只有C满足题意.答案C4.(2019·西安月考)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)的解析式为(
)A.f(x)=ex+1 B.f(x)=ex-1C.f(x)=e-x+1 D.f(x)=e-x-1解析依题意,与曲线y=ex关于y轴对称的曲线是y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-(x+1)=e-x-1.答案D5.(一题多解)(2018·全国Ⅲ卷)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是(
)A.y=ln(1-x) B.y=ln(2-x)C.y=ln(1+x) D.y=ln(2+x)解析法一设所求函数图象上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=lnx的图象上,所以y=ln(2-x).法二由题意知,对称轴上的点(1,0)在函数y=lnx的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.答案B答案
(2,8]考点一作函数的图象【例1】
作出下列函数的图象:(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.规律方法作函数图象的一般方法(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】
分别作出下列函数的图象: (1)y=|lgx|;(2)y=sin|x|.解(1)先作出函数y=lgx的图象,再将x轴下方的部分沿x轴翻折上去,即可得函数y=|lgx|的图象,如图①实线部分.(2)当x≥0时,y=sin|x|与y=sinx的图象完全相同,又y=sin|x|为偶函数,图象关于y轴对称,其图象如图②.考点二函数图象的辨识(2)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为(
)法二
当x=1时,f(1)=1+1+sin1=2+sin1>2,排除A,C;又当x→+∞时,y→+∞,排除B,而D满足.(2)f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),排除选项A,B;当x≥0时,f(x)=2x2-ex,f′(x)=4x-ex,所以f′(0)=-1<0,f′(2)=8-e2>0,所以函数f(x)在(0,2)上有解,故函数f(x)在[0,2]上不单调,排除C,故选D.答案(1)D
(2)D规律方法
1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.【训练2】
(2018·浙江卷)函数y=2|x|·sin2x的图象可能是(
)解析设f(x)=2|x|sin2x,其定义域为R且关于坐标原点对称,又f(-x)=2|-x|·sin(-2x)=-f(x),所以y=f(x)是奇函数,故排除选项A,B;答案
D考点三函数图象的应用
多维探究角度1研究函数的性质【例3-1】
已知函数f(x)=x|x|-2x,则下列结论正确的是(
)A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(-∞,1)C.f(x)是奇函数,递减区间是(-1,1)D.f(x)是奇函数,递增区间是(-∞,0)答案C角度2求不等式的解集【例3-2】
已知函数y=f(x)的图象是如图所示的折线ACB,且函数g(x)=log2(x+1)”,则不等式f(x)≥g(x)的解集是(
)A.{x|-1<x≤0} B.{x|-1≤x≤1}C.{x|-1<x≤1} D.{x|-1<x≤2}答案
C角度3求参数的取值范围解析在同一坐标系中,作y=f(x)与y=b的图象.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,∴要使方程f(x)=b有三个不同的根,则有4m-m2<m,即m2-3m>0.又m>0,解得m>3.答案(3,+∞)规律方法
1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练3】(1)(2019·昆明检测)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)(
) A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值 D.有最大值-1,无最小值 (2)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是________.解析(1)画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图象是图中的实线部分,因此h(x)有最小值-1,无最大值.[思维升华]1.识图
对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图
借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.[易错防范]2.明确一个函数的图象关于y轴对称与两个函数的图象关于y轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.直观想象——函数图象的活用类型1根据函数图象特征,确定函数解析式
函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.【例1】
已知函数f(x)的图象如图所示,则f(x)的解析式可以是(
)答案A类型2利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助图象研究,但一定要注意性质与图象特征的对应关系.【例2】
(2019·安徽江淮十校联考)已知m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国航天历史课件
- 2024年度产品研发与改进合同3篇
- 2024中国石化江苏油田分公司毕业生招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信山东淄博分公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国核工业集团限公司校园招聘7000人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国大唐集团海外投资限公司招聘33人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国供销集团校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中冶华天南京电气工程技术限公司招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上半年四川内江页岩气产业发展限公司员工招聘8人易考易错模拟试题(共500题)试卷后附参考答案
- 产科健康教育沟通会课件
- 2022年甘肃省职业技能大赛小程序设计与开发赛项(高职学生组)试题 A卷
- 小学四年级数学奥数题库100道及答案(完整版)
- 了解红旗渠学习红旗渠精神
- 2024年山东省济宁市中考英语真题(原卷版)
- 城市综合管廊工程技术标准局部修订条文征求意见稿征求意见稿
- 学术论文的撰写方法与规范
- 2024年交通安全考试题
- 扫地机器人行业及其产业链分析
- 集团母子公司协议书
- 2023-2024年度内蒙古自治区安全员之C2证(土建安全员)基础试题库和答案要点
- 2024-2029全球及中国工业级硫酸锰行业市场发展分析及前景趋势与投资发展研究报告
评论
0/150
提交评论